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The Sthﬂg Perfect 1. Introduction
Graph Theorem in this note, ail graphs are simple (no loops or

mudtiple edges) and finite. The vertex set of graph
G 15 denoted by VIG) and s edge set by ZF{G). A
Gérard COI‘HUéjOlS " stable set is a set of verrices 1-1() wo of which are
adjacent. A cfigue is a set of verrices every pair of
March 31, 2003 which are adjacent. The cardinality of a largest
clique in graph  is denoted by w( (7). The
cardinality of a largest stable set is denoted by
alG). A k-codoring is a partition of the vertices
into £ stable sets (these srable sets are called color
classes), The chromatic mumber (G is the smallest
value of £ for which there exists a £coloring.
Ohbviously, w{(7} < %{G) since the vertices of a
clique must be in distinet color classes of 4 A
coloring. An induced subgraph of G is a graph
with vertex set § & V() and edge set comprising
alf the edges of & with both ends in S. It is
denoted by G(5). The graph GV(G) - 5 is
denoted by GA\S, A graph G s perfect if
w{H) = y{H) for every induced subgraph # of .
A graph is minimally fmperfece 1 1t is not perfect
but all its proper induced subgraphs are.

A hole is the graph induced by a chordless cycle
of length at least 4. A hole is odd if it contains an
odd number of vertices. (dd holes are not perfect
since their chromatic number is 3 whereas the size
of their largest clique is 2, It is casy to check that
add holes are minimally imperfect. The
complement of a graph G is the graph G with
the same vertex set as (7, and v is an edge of Gif
and only if it is not an edge of G. Tt is easy o
check thar complements of odd heles are alse
minimally imperfect. In the early sixties Berge [1]
proposed the Strong Perfect Graph Conjecture:
The odd holes and their complements are the only
minimally imperfect graphs, This conjecrure
artracted much amention over the last forty years,
It was proved in May 2002 by Chudnovsky,
Robertson, Seymour and Thomas [9] in a very
impressive paper. Claude Berge passed away in
June 2002 knowing chat his famous conjecture is

Wue,

Theorem 1.1 (Strong Perfect Graph Theorem)
{Chudnovsky, Robertson, Seymour and Thomas
[91) The only minimally imperfect graphs are the

odd holes and their complerens,

In this pote, we survey key aspects of the proot’
of the Strong Perfect Graph Theorem. A Berge
graph is a graph that does not contin an odd hole
of igs complement as an induced subgraph,
Clearly, every perfect graph is a Berge graph. The
Strong Perfect Graph Theorem states thar the
converse is also true: Bvery Berge graph is perfect,
The idea of the proof is to shaw that every Berge
graph either falls into one of four basic classes of
perfect graphs, or that ic has a kind of separation
that cannor occur in a minimally imperfecr graph.

in [1], Berge also made a weaker conjecture,
which states that a graph G s perfect i and anly if
its complement G is perfect. This conjecture was
proved by Lovdsz [24] in 1972, We give a short
eegant proof due to Gasparyan [21],

Theorem 1.2 (Perfect Graph Theorem)
(Lovidse [24]) Graph G is perfect if and only if

graph (i is perfect.

Prooff Lovdsz [25] proved the following stronger
result.

Claim 1: A graph (7 is perfect if and only i,
for every induced subgraph H, the number of

vertices of H is at most ol 4 e(H).

Since o) = o) and wlH) = o), Claim 1

implies Theorern 1.2,

Proof of Claim It First assume that G is
perfect. Then, for every induced subgraph /7,
ol H) = 2(H). Since the number of vertices of His
ar most o Hy(H), the inequality follows.

We give a proof of the converse due w0
Gasparyan {211 Assume that 7 is nor perfect. Let
H be a minimally imperfect subgraph of & and let
# be the number of vertices of H. Let o = a{H}
and o = oM . Then / satisfes

w = x(A\e) for every vertex v € V(F)
and @ = ol FNS) for every stable set § € V(H).

Let A, be an a-stable set of H. Fix an ar-coloring
of cach of the o graphs Hsfors € A,

lec A, ..., A, bethe stable sets occurring as a
color class in one of these colorings and let

A = {dp A, .4  Ler A be the

corresponding stable sex versus vertex incidence

™
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marrix. Define B o= i,

B .... B, }where Blis
an a-clique of /1 A4, Let B be the corresponding

clique versus vertex incidence marrix,

Claim 2: Pvery m-clique of A inrersects all but

one of the stable sets in S

Proof of Clatm 2: 1et S, ..., S, beany
w-coloring of A\ » . Since any o-cique Col
has at most one vertex in cach S, C intersects afl
Suif e € " and all but one if » €. Since C has
ac most one vertex in Ay, Claim 2 follows,

In particular, it follows thar AB’ = /- fwhere ]
is the matrix Alled with ones and 7 the identiry.
Since / — /s nonsingular, A and B have ar least as
many columns as rows, thar is 2 2 ww + 1. This

complezes the proof of Claim 1. |

2. Four Basic Classes of Perfect
Graphs

Bipartite graphs are perfect since, for any induced
subaraph A, the biparition implies that x(F) <2
and therefore w(H) = 2 ().

A graph L is che line graph of a graph Gif
VL) = ELGY and two vertices of £ are adjacent if’
and only if the corresponding edges of (are

adjacent.

Proposition 2.1 Line graphs of bipartite graphs

are perfect.

Proof: 1f G is biparere, x'(G) = A{G) by a theorem
of Kénig [23}, where y' denotes the edge-
chromasic number and A the largest vertex degree.
1f £ is the line graph of a bipartite graph G,
then (L) = ¥ (G and w(l) = A(G). Therefore 3 (1}
= (L), Since induced subgraphs of L are also line

graphs of bipartite graphs, the result follows, o

Since bipartite graphs and line graphs of
bipartite graphs are perfect, it follows from
Lavdsz's perfect graph theorem {Theorem 1.2}
that the complements of bipartite graphs and of
line graphs of bipartite graphs are perfect. This can
also be verified directly, without using the perfect
giaph theorem. To summarize, in this section we
have introduced four classes of perfect graphs:

= bipartite graphs and their complements, and

* line graphs of bipartite graphs and their

complements.

These graphs are called basic.

3. 2-Join, Homogeneous Pair and
Skew Partition

2-join
A graph & has a 2-join i it vertices can be
partitionted into sers V) and V), cach of cardinality
at least three, with nonempey disjoint subsets
AL B SV and A, B, € V,, such thar all the
vertices of 4, are adjacene w all the vertices of A,
alf the vertices of B, are adjacent to all the verdces
of B, and these are the only adjacencies between
V, and V. 2-joins were intraduced by Cornudjoks
and Cunningham [17] in 1985, They gave an
OV G

whether a graph (5 has a 2-join.

3 ~
) algarithim to find

When (& containg a 2-join, we can decompose

(' inw rwa blocks € and (7, defined as follows.

Definition 3.1 /f' A, and B, are in different
connecred components of GUV,), define block G| 1o
be GUV, \Jip g 1), where p €A, and q, € B,
Otherwise, ler P be a shoviest path from A, 1o B,
and define block G to be GUV, WV (P}, Block

&7, 15 defined similarly

Theorem 3.2 {2-Join Decomposition
Theorem) (Cornuéiels and Cunningham [17])
Graph G is perfect 1f and only if is blocks G and
G, are perfect.

Corollary 3.3 If a minimally imperfect graph &
has @ 2-join, then G s an odd hole.

Proof: Since (7 is nov pr:rfect, Theorem 3.2 implies
that black G, or G, Is not perfecy, say (5. Since
€7, s an induced subgraph of (7 and G is
minimally imperfecr, it follows that = &, Thus,

since

V] = 3, V, induces a chordiess path P
Therefore (7 is a minimally imperfect graph with a
vertex of degree 2. [t is weil known thar such a

graph (7 is an odd haole [27]. =]

Homogeneous Pair

The notion of homogeneous pair was
introduced by Chvdral and Shihi [3]. A graph &
has & homageneous pair if V(G) can be partitioned

into subsers A, A4, and B, such chat:

A+ Az 3and |B = 2

* It a vertex of B is adjacent to a vertex of A,
then it is adjacent to alt the verdces of'/lﬁ, for
i €141, 2}

Theorem 3.4 {Homogeneous Pair Theorem;
(Chvital and Shihi {31} No minimally imperfect

graph has @ homageneous pais.

Skew Partition

A graph G has a skew partition i it vertees can
be partitioned mw four nonempry sews A, B, C D
such that there are all the possible edges between A4
and B and no edges from Cro D. Chvieal [3]
introduced skew partitions in 1985 and he
conjectured thar no minimally imperfect graph has
a skew partition. He observed that the conjecture
holds for a star cutset, defined to be a skew
Al=1

partition where

Lemma 3.5 (Star Cutset Lemma) {Chvdeal {3])
No minimnally tmperfect graph has a star cutset.

Proofi Let G, be the graph induced by 4 W 5 W/
Cand @, the graph indoced by 4 W 5 W7 DD,
The graphs ¢, and 5, are perfect, Lot S, be the
color class of an w(&)-coloring of &, thar contains
the unigue node of A4, for 7 € {1, 2}, Then 5,
meets all the o Gh-cliques of G, Lo oGS
S0 < e{G) b follows thar G (5 W 5,) can be
colored with fewer than o(G) colors, since it 1s
perfect. Since §, WS, s a stable ser, & can be

colored with ol G colors, a coneradicrion. O

Noteworthy contributions towards the skew
partition conjecrire were made by Hehng [22]
and Roussel and Rubio [28]. The conjecture was
sertled by Chudnovsky, Robertsen, Seymour and
Thomas [9]. They obuained it as a consequence of

the Strong Perfect Graph Theorem,

Theorem 3.6 {Skew Partition Theorem)
{Chudnovsky, Rebereson, Seymour and Thomas
[0 No minimally fmperfece graph bas a skew

partition.

I erder ta prove the Strong Perfect Graph
Thearem, Chudnovsky, Robersen, Seymour and

Thomas first proved the following weaker resulr,

A skew partition is balanced it

(i) every induced path of length ac leasc 2 in &
with ends in A U Band interior in O\ D
is even, and

(i1) every induced path of length at least 2 in G
wich ends in €U D and interior in AU B is

EVELL.

Theorem 3.7 {Chudnevsky, Roberon, Seymour
and Thomas [8]) A minimally imperfect Berge
graph with smallest mumber of vertices cannor have

a balanced skew partition.
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We give the prool of Theorem 3.7. Ir uses
Loviés:'s Replication Lemma [24] which we
discuss nexr. Incidensally, the Replication Lemma
was the step that Fulkerson missed in his artempt
1o prove the Perfect Graph Theorem. Becanse
Fulkerson had convinced himself that it was hlely
to be false, he had not wied very hard to prove ic.
Fulkerson [20] says: “In the Spring of 1971, 1
received a postcard from Berge saying that he had
just heard that Lovdsz had a proof of the perfect
graph conjecrure, This immediately rekindled my
interest, naturally, and so I sae down at my desk
and thought again abour the replicarion lemma.
Some four or five hours later, | saw a stmple proof

of it.”

Lemma 3.8 (Replication Lemma)} (Lovisz [24])
Ler G be a perfect graph and v € V{(G). Create o
new vertex v’ and jorn it to v and to all the
neighbors of v Then the resulting graph G i
perfect.

Praef: It suffices to show ¥(G') = w{(') since,
for induced subgraphs, the proof follows similarly.

We distinguish two cases.

Case 1: Verrex v is contained in some maximum
clique of G. Then e(('} = w{G) + 1. This
mplies (G} £ w{G ), since at most one
new color is needed in G, Clearly
(G} = o{G') follows.

Case 2: Vertex » is not contained in any
miaximum cligue of . Consider any
coloring of &G with o{(7) colors and let § be
the color class containing v. Then
oGNS~ {2 1) = o{G) - 1, since every
maximum clique in (7 meets S — { # |. By the
perfeciion of G, the graph G\ (8§ —{v}} can
be colored with o) — 1 colors. Using one
additional color for the vertices (8 — {o}) U
te'}, we obrain a coloring of G’ with ol()
colors. ]

Preof of Theorem 3.7: Let (G be a minimally
imperfect Berge graph with smallest number of
vertices. Suppose that G has a balanced skew
partition A, B, C, D. By the Star Cuser Lemma
3.5, each of 4, B, €, 12 has cardinaliry ar least rwo,
Let G* be the graph obtained from G by adding a
vertex v adjacent to all the vertices of A and o no
other vertex of G. If G' conrains an odd hole,
then & has an odd path contradicting (i) in the
debnition of a balanced skew partizion. Similary,
if G conmins an odd hole, (i) is contradicred.
Therefore " is a Berge graph. Now censider

G =G'\Dand G, = G"\C For i €11, 2}, the

graph. G, is perfect since it is Berge and has fewer
vertices than 5. Replicare vertex v in G so that »
belongs 1o a clique of size w{(Y). By the
Replication Lemma 3.8, the resulting graph & is
pertect. Consider eo{G)-colorings of &, and &,
respectively. Both colorings have the same number
of colors 1n A and assumne wlo.g. that these colors
are 1,2, ..., £ Let K be the subgraph of &
induced by the versices with colors 1,2, ..., #
and let A be the subgraph of & induced by the
verzices with other calors, Since every o{G)clique
of Gisin G\ Dor G\ €, the largest chique in &
has size # and che largest dique in & has size

o) — k. The graphs A and K are perfect since
they are proper subgraphs of (. Color K'with &
colors and A with o) — £ calors. Now 7 is
colored with w{ (5} colors, a contradiction o the

assumption that G is minimally imperfect. 13

Theorem 3,7 was presented in Seprember 2601
at & workshop in Princeton. As the next step
towards Theorem 3.6, Chudnovsky and Seymour

obrained the following theorem in January 2002.

Theerem 3.9 (Chudnovsky and Seymour {10]) 4
minimatly imperfecr Berge graph with smallest

muriher of vertices cannot have a skew partition.

4. Decomposition of Berge Graphs

Confert, Cornudjels and Vuskovi¢ proposed the
following approach to solving the Stong Perfect
Graph Conjecture.

Conjecture 4.1 (Confort, Cornudjols and
Vugkovié (2001)} (Decomposition Conjecture)
Every Berge graph (3 Is basic or has a skew
partition, or (G or G has a 2-foin.

Chudnovsky, Robertson, Seymour and Thomas

proved the following variadion of this conjecture.

Theerem 4.2 {Chudnovsky, Robertson, Seymour
and Thomas [91) (Decompesition Theorem)
Every Berge graph (5 is basic or bas a skew
partition or a homagencous patr, or G ar G hasa

2-join.

This theorem implies the Strong Perfect Graph
Theorem. Indeed, suppose that the
Decomposition Theorem holds and thar dhere
exists & minimally imperfect graph & distincr from
an odd hele or its complerment, Choose G with
the smallest number of vertices. & cannot have a
skew paration by Theorem 3.9. G cannot have a
homegeneous pair by Theorem 3.4, Neither &
nor G can have a 2-join by Corollary 3.3. Since

G is a Berge graph, (7 must be basic by the
Decomposition Thearem. Thercfore & is perfecr, a
contradiction.

Theorem 4.2 was already known to hold in
several special cases. For example, it was known
when G is a Meyniel graph (Burler and Fonlupt
[2] in 1984}, when (' is claw-free {Chvidtal and
Sbihi [6] in 1988 and Maffray and Reed [26] in
1999}, diamond-free (Fonlupt and Zemirline [19]
in 1987), bull-free (Chvdral and Shiki [3] in
1987), or dart-free (Chvdral, Fonlupr, Sun and
Zemirline 4] in 2000}, All these results involve
special types of skew partitions (such as scar
cucsets) and, in some cases, homogeneous pairs
i3], A special case of 2-join called augmentation of
a flar edge appears in [26]. In 1999, Conford and
Cornudjols [13] used more general 2-joins to
prove Conjecture 4.1 for WP-free Berge graphs, a
class of graphs that contains all bipartite graphs
and all line graphs of bipartite graphs. {13] was the
precursor of a sequence of decomposition results
involving 2-joins, The following result was

ebtained in February 2001,

Theorem 4.3 (Conlort, Cornudjols and
Vuskovic [14]} A square-free Berge graph is
bipartite, the line graph of a bipartite graph, or has
a 2-join or @ star cutset.

A brealcthrough occured in Seprember 2001
when Chudnovsky, Robertson, Seymour and
Thomas announced that they could prove the
Decomposition Conjecture in the following

important special case.

Theorem 4.4 {Chudnovsky, Robertson, Seymour
and Thomas [8]) /f G is a Berge graph that
contains the line graph of @ bipartize subdivision of
a 3-connected graph, then G has a balanced skew
partition, or & or G has a 2-join or is the line

graph of a bipartite graph.

Given two vertex disjoint wiangles @, «,, 4, and
by, by, b, a subdivided prism is a graph induced by
three chordless paths, P - Ao, bl,

P = -

L y
of which has length grearer than one, such that P,

3
Sbyand Psag o by anteast one

7, ¥ have no commeon vertices and the only
adjacencies berween the vertices of distiner paths
are the edges of the two wiangles. The next result,
obuined in January 2002, is a real wour-de-force
and a key step in the proof of the Strong Perfect
Graph Theorem. In pardicular, it was needed to

prove Theorern 3.9,
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Theorem 4.5 (Chudnovsky and Seymour [100) /f
G is a Berge graph that contains a subdivided
g, then G ix the line graph of @ bipartite graph
or G has a balanced skew partition or a
homageneous pair, or (3 or 6 hasa 2-join.

A wheel (H, v) consists of a hole A rogether
with a vertex v, called the cenzer, with at least
three neighbors in H. 1f ¢ has £ neighbors in A,
the wheel is called a f-wheel. A line wheel is a 4-
wheel (7, ») that contins exacdy two triangles
and these two riangles have only the center v in
common, A fzein wheel is a 3-wheel conaining
exactly two triangles. A wniversal wheel 1s a wheel
{H, v} where the center v is adjacenr o all the
vertices of H. A triangle-free wheel is a wheel
containing no triangle. A proper wheel is a wheel
that is not any of the above four types. These
concepes were first introduced in [13]. The
following theorem, obrained in May 2002,
generalizes an earlier result of Zambelli presented
in Seprember 2001 and of Thomas {29].

Theorem 4.6 (Conford, Cornuéiols and Zambelli
116]) if G is a Berge graph that contains no proper
wheel, subdivided prism or their complements,

then G is basic or has g skew partition.

The last step in proving the Strong Perfect
Graph Theorem is the following diffcule theorem,
also obtained in May 2002.

Theorem 4.7 (Chudnovsky and Seymour {11} If

G is @ Berge graph that contains o proper wheel,
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ISMP2003 NEWS

ISMP2003 - The 18 internadonal Symposium on
Mathematical Programming- to be held 18 - 22 August

in Copenhagen, Denmark, is now rapidly approaching.

We have received 737 abstracts for presensation, and
the number of registered pardeipants is currently 939,
The organizing commirree has made a serious effort to
avoid no shows, and currently there are only 2 "non-
paid” abstracts. Judging by the contents of the abseracss,
the symposium will - as is common for this event - he of

high scienafic quality.

The presentations will be scheduled in 25 parallel
sessions. The daily schedule starts at 9 with a bleck of
parailel sessions followed by a plenary lecture. A block of

parallel sessions initases the afrernoon followed by 3

semi-plenary lectures. Finally, on Monday August 18 and
Thursday August 21, a blodk of paraliel sessions ends the
day, whereas Tuesday 19 and Wednesday 20 are "early
off" days due o the Conference Dinner and the City
Hall reception. The symposium. ends Friday Auguse 22
just before lunch with the last of the 17 plenary and

semi-plenary lectures.

The fulf program as well as all other information is

available on the symposium home pagewwwismp2003.dk.
We look forward to welcomning you in Copenhagen.

Jens Clausen
Chairman of the Organizing Committee
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TALH 7

The 7th International Symposium on
Generalized Convexity/Monotonicity

Hanoi, Vietnam, August 27-31, 2002.

The Symposium (GC7) was organized by the
inrernational Working Group on CGeneralized
Convexity (WGGC) and hosted by the Hanoi
Instituce of Mathemarics, Viernam Narional
Cenrer for Narural Sciences and Technology at
Hanoi, Viermam during Auguse 27-31, 2002, For
the first time the Symposium was held oumside
North America and Europe reflecting the growing
research activities in the Asia-Pacific region, It was
sponsored by the Pacific Oprimizadon Research

Activity Group as well.

The aim of the Symposium was to provide a
forum for the exchange and disseminazion of new
ideas in the field of generalized convexity and
generalized monotonicity and their applications in
optimization, control, stochastics, economics,
management science, finance, engineering and
other related opics, The purpose of the
Symposium was fulfilled as GC7 was well
represenred by researchers from many pars of the
world, There was a noticeable increase in the
number of participanss from the Asia-Pacific
regrion. Collaboration of researchers from varions
countries has been an inzegral part of the research
carried out by members of WGGC, and dus was
reflected by the presentations made during the
conference. The sense of being a part of a large
family of researchers with common interests was
special. The credit of new joint works in the near
future would go to the organizers of the
conference and the participants whe made this
symposium a great success. [ he organizers did an
excellent job of arranging a comfortable sty in
Hanoi and providing the facility of using the
libeary and internet services for all participants

throughout the day.

Abous fifty presentations, including the invited
talies, were made during che five days of the
Symposium. The invited talks were presented by
R.E.Burkard, Austria (combinatorial
optimization), B.Mordukhovich, USA
{nonsmooth analysis} and H. Tay, Vietnam {global
optimization}. For program details of GC7 we
refer to the web page at
www.marh.ac.vn/conference/gem?7/ and to the
WGGE web page ar www.genconv.org. Refereed
Proceedings of the Symposium will appear in a
volume with Kluwer Academic Publishers to be
edited by A Eberhard, N. Hadjisavvas and

D T.Luc. Information on the proceedings of the
previous six symposia and on futre WGGC

sctivities is available ar www.genconvorg as well.

Apart from the excellent academic atmosphere the
participants had the opporunity of enjoying
dinner with Vietnamese rraditional music,
exploring the city of Hanol, warching the amazing
puppet show at the Water Pupper Theater and
tasting Vietnamese cuisine at the Banquet with a
firsr-raze performance of Vietnamese instrumental
and vecal music. Some of the participants stayed
on for a rwo-day tour to the heautiful spot of Ha
Long Bay near the sea recognized by the U.N. as
a World Heritage Site. It is surrounded by many
small islands of various shapes and is famous for
irs amazing Jimestone <hiffs, numerous caves and
unbelievable scenic beaury. This excursion was a
memorable ending of the trip to Viemam for
many participants of GC7.

Sandor Komiosi, Secrerary WGGC

komlosi@ictk.pre.hu
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in a forthcoming issue.

Constructing
Nontransitive Dice

Robert A, Bosch
April 3, 2003

We invite OPTIMA readers w submit solutions w the problems to Robert
Bosch {bobb@cs.oberlin.edu). The most attractive solurions will be presented

Two gamblers have decided o use the {unfolded}
dice displayed in Figure 1 to settle an argument.
They've decided that

* they'll cach pick one dic and roll it once,

* gambler I will pick first, and

» whoever rolls the higher number will win,

Iy Iy Dy
1] 2] B
HEE lzi818]  |2]5]5]
9 xa il
Kl Kl il

Figure 1

These dice are nontransitive. If gambler 1 picks
D, gambler 2 should pick 12, If gambler 1 picks
D, gambler 2 should pick ). And if gambler 1
picks D, gambler 2 should pick D). No marrer
which dic gambler 1 picks, gambler 2 will win
with probahility 5/9 (since Prob{D, = D) =
Prob(D, = D)) = Prob(D, > [3)) = 5/9).

The well-known staustician Bradley Efron was
the first to design sers of nonwansitive dice, and
Martin Gardrer was the frst to popularize them
{see chapeer 22 of {1]).

Problems

Interested readers may enjoy trying o solve the
following problems:

1. Devise an integer programming formulation
or a constraint programming formulation for
constructing nontransitive dice.

2. Use the formulation to find a ser of three
noneransitive dice that has the following
properties: (1) each face has a number
berween 1 and 18 on 1t (i1) cach number in

this range appears on exactly one face, and

(i) Prob{D, > 1) < Prob(D, = D)
Prob{Dd, > ). Maximize Prob(D, = D).

Slither Link Revisited

The previous Mindsharpener was concerned with
shither fink puzales, In a slicher link puzzle, the
gaal is to fnd a cyele thar consists of herizontal
and vertical line segments and sausfies the puzzle’s
adjacency conditions: for each square 5 and for
every number 4, if square s has the number « In it,
then s must be adjacent to precisely # segments of
the cycle. See Figure 2 for an example; see Figure

3 for its solution.
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Figure 2
It is easy to formulate an [T that can be used

sobve slither link puzzles, In an # x n puzzle, there
arc 7 rows and # columns of squares and 2 + 1
rows and # + 1 columns of poings. We number
the rows and columns of squares from 1 to 7 and
the rows and calumns of points from 0 to ». For
each 0 <4, j <, we let p,; equal 1 if the cycle
visits poine (7, 7} and 8 if not. Foreach 8 75w
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and 0S50 -1, weler /Eiw equal 1 if the For cach square that contains a number, we need another

horizontal line segment connecting points  constraint. [f square {7, /) containg the number ¢, then

(i pand (7, 7 + 1) is a part of the cycdle and  we need to include the constraine

O not. Foreach 0 </ <# -1 and

0575 mweler s, equal 1if the vertical A R ey

line segment conneceing points (4, j) and .

(i + 1, ;) is a part of the cycle and 0 if not.  This constraint ensures thar exactly 4 segments of the
Far each point {7, /), we need a “degree”  cycle are adjacent to square (7, 7).

CORSIrame. lf(i,]} is an interior point (Le.,

0 < 4, j < n} the degree constraint is Our solution strategy is to minimize the length of the

“rour” subject to all of these constaints. If we ind that

e there are subrours, we simply add constraints to

eliminate them. (None were needed o produce the

This constraint says two things: {1) #the  soludion displayed in Figure 3.)

cycle visies poine (7, 7}, then exactly swo

Figure 3

line segments of the cycle are incident to (7, 7}, and (2} if

the cycle doesn't visit point (7, 71, then none of the line References

segments of the cycle are incident to (7, 7). The degree

constraints for edge points and corner points are similar.

[1] M. Gardner, The Colvssal Bosk of Mathematics,
MWW Norton, 2001,

Announcement

The Fourth International Conference on "Frontiers

in Global Optimization” (organized by C. Floudas and
P. Pardalos} toole place June 8-12, 2003 in Santorini,
Greece, About 85 acrive researchers from all over the
world participated in the conference. The conference
focused on deterministic methods for global
optimization, stochastic methods for global
optimization, distributed compuring metheds in global
optimization, and appiications of global optimization in
all branches of applied science and engineering,
computer science, computational chemistry, stractural
biology, and bioinformatics. A refereed conference
book with selected papers based on talks presented at
the conference will be published by Kluwer Academic

Publishers later this year.

Conference

Multiscale Optimization
Methods and Applications

February 26-28, 2004

The Center for Applied Optimization at the University of
Florida, in conjunction with the 2003/2004 Special Year
Mathematics Program, is hosting a conference entitled
“Mudtiscale Optimization Methods and Applications,”
February 26-28, 2004, For information about the
conference, please see the web site: http://www.math.
ufl.ediz/special03// or contact one of the organizers:

Timathy Davis {davis@cise.ufl.edu)
William Hager {hager@mach.ufl.edu)

Panos Pardalos {pardatos@ufl.edu)
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Mathematical Programming Sociery
- 3600 University City Sciences Center
1 will pay my membership dues on receipt of your invoice. Phifadelphia, PA 19104-2688 USA

My subscription is for my personal use and not for the benefit of any library or instirucion.
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