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Philippe L. Toint

MOS Chair’s Column

November 1, 2011. Here is yet another issue of Optima packed
with goodies central to our field. After the summer months most of
us are now back to our more usual occupations and our research
activities in optimization. I truly hope that you share my anticipation
of its moments of collaborative inspiration. One thing is sure: after
the successful mid-year meetings, we are now heading towards the
high point of 2012: the ISMP in Berlin. I hear from good sources that
preparations are progressing well, and that all augurs are favourable.

As you all know, several prizes will be awarded at the ISMP open-
ing ceremony, recognizing the contributions or both younger and
more senior colleagues. You undoubtedly have seen the various
calls for nominations for the Dantzig, Lagrange, Fulkerson, Beale-
Orchard-Hays and Tucker prizes as well as that for the Paul Tseng
lectureship. I encourage you to seriously consider nominating one or
more optimization researchers for these prizes. These awards and
the high scientific standards of their recipients not only recognize
the talents in our field, but also significantly improve its visibility to
scientists in different domains and to the general public. Even if not
essential, this remains useful in our times of media frenzy . . .

I could not conclude this column without congratulating Richard
Tapia for his recent nomination by president Obama for the US Na-
tional Medal of Science. I have known Richard for many years and,
besides his insightful technical achievements, I have always admired
his determination to provide students and researchers from Mexico
and elsewhere with the most valuable guidance and opportunities –
an effort that often revealed talented people to the international
community. That he is recognized today for both this achievements
is only justice. Congratulations, dear Richard, in the name of us all.

Finally, I just heard from the MOS office that the emails have been
sent to encourage you to renew your membership in the Society.
Please take this suggestion seriously and renew or become a mem-
ber: your affiliation does make a difference in the worldwide standing
of the Society, and this is in our common interest.
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Note from the Editors

Whether or not there exists a polynomial-time variant of the sim-
plex method depends on the geometry of polyhedra, and Hirsch
conjectured in 1957 that, for any polyhedron defined by n inequal-
ities in d dimensions, the length of the longest shortest path be-
tween any two vertices is at most n-d. When Francisco Santos
announced his counterexample to the Hirsch conjecture in spring
2010, it sparked a flurry of activity examining the geometry and
complexity of linear programming.

Jesus De Loera writes our main article in this issue. He paints
a vivid landscape of these new developments in linear optimiza-
tion, particularly from a geometric viewpoint, and even goes inside
the polyhedron to survey the geometry of interior-point methods.
Guenter Ziegler also provides his perspective, challenging us to push
farther and faster into this area. Both authors see an exciting and
fruitful future for linear programming, a topic which is so fundamen-
tal to our field but still harbors many mysteries.

Sam Burer, Co-Editor
Volker Kaibel, Co-Editor
Katya Scheinberg, Editor

Jesús A. De Loera

New Insights into the Complexity and
Geometry of Linear Optimization

Linear programming is a pillar for computation and theory in math-
ematical optimization. For example, optimization problems with dis-
crete variables are often reduced via branching to repeated use
of linear programming [45]. Linear programs are also used in var-
ious approximation schemes for combinatorial and non-linear opti-
mization (see e.g., [52, 100]) and in exciting new applications (e.g.,
[19, 20]). But the impact of linear optimization goes well beyond op-
timization and reaches other areas of mathematical research, e.g.,
in combinatorics and graph theory [53, 90]; and more recently
the solution of the Kepler’s conjecture required sophisticated lin-
ear programming techniques [55]. There are several excellent books
( [14, 74, 91, 96]) and surveys on the theory and complexity of linear
optimization (such as [79, 95]) covering advances up to 2002.

This article recounts recent exciting progress in the theory of lin-
ear optimization. I do not try to cover all advances, which would be
impossible, but instead I focus on the geometric ideas that arose in
recent times. In fact 2010 was an annus mirabilis for the theory of
linear programming and most of the results I review here were pre-
sented at the workshop “Efficiency of the Simplex Method: Quo vadis
Hirsch conjecture?” which took place January 18–21, 2011 at the Insti-
tute for Pure and Applied Mathematics at the University of California
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Los Angeles (IPAM). I hope this article hints at the beautiful geome-
try that provide us with new opportunity. Just like Günter M. Ziegler
suggested in [105], geometry does contribute to understand linear
programs! So, while we assume the reader is somewhat familiar with
linear programming, we will visit some of its finer geometric details.

In what follows I assume the feasibility region of a linear pro-
gram is a rational convex polyhedron P ⊂ Rd given by the set of
solutions of a the system of the form Ax ≤ b, where A is an
integral matrix with d-dimensional row vectors a1, . . . , an. Thus
P = {x ∈ Rd : Ax ≤ b}, where A ∈ Zn×d. For the most part we
assume that vectors a1, . . . , an span Rd. In this way, the input size is
given by d variables, n constraints, and the maximum binary size L of
any coefficient of the data. We remark that in later sections, depend-
ing on the computations being discussed, we may change to other
input format or presentations. When a polyhedron is bounded, we
call it a polytope and they will be the main object of this article. A
linear program is called non-degenerate if there is no x ∈ P that sat-
isfies d + 1 or more of the defining inequalities as equations. The
corresponding polyhedron is called simple. It is well known that in
discussing the complexity of linear programming there is no loss in
generality in restricting the discussion to simple polyhedra, and we
will mostly do this in this paper. The geometry of polytopes is clearly
presented in the books [10, 104].

1 Advances related to the Simplex Method
Dantzig’s simplex method from 1947 [24] and its variations are some
of the most common algorithms for solving linear programs. It can
be viewed as a family of combinatorial local search algorithms on the
graph of a convex polyhedron. More precisely, the search is done
over a finite graph, the one-skeleton of the polyhedron or graph of
the polyhedron, which is composed of the zero and one dimensional
faces of the feasible region (called vertices and edges). The search
moves from a vertex of the one-skeleton to a better neighboring
one according to some pivot rule which selects an improving neigh-
bor. The operation of moving from one vertex to the next is called a
pivot step or simply a pivot. Geometrically the simplex method traces
a path on the graph of the polytope. Today, after sixty years of use
and despite competition from interior point methods, the simplex
method is still widely popular. The simplex method has even been
selected as one of the most influential algorithms in the 20th cen-
tury [32], but we still do not completely understand its theoretical
performance.

One famous question is whether a polynomial-time version of the
simplex method is possible. Such an algorithm would allow the solu-
tion of a linear program with a number of pivot steps that is a poly-
nomial in d, n, and L. Is there even a strongly polynomial version,
where the polynomial bound only depends on n and d? There are
two big gaps of knowledge for uncovering the mystery: First, despite
great effort of analysis, it remains open whether there is always a
polynomial bound on the shortest path between two vertices in the
skeleton. The diameter of the graph of a polytope is the length of the
longest shortest path among all possible pairs of vertices. But even
if we knew today a polynomial bound on the diameter of polyhedra,
there is a second missing puzzle piece to decide the polynomiality of
the simplex method. Klee and Minty first showed in 1972 [70] that
pivot rules could be tricked into visiting 2d vertices to find a path
between two nodes, but the vertices are only one step apart in the
skeleton of the cube. Since that achievement, most other pivot rules,
including many favored in practical calculations, have been proved to
be theoretically inefficient (see [5] and references therein). In the
first section of this survey I summarize progress made on tackling
these formidable obstacles.

Figure 1. Francisco Santos (Photo by Komei Fukuda)

1.1 Francisco Santos’ counterexample to the Hirsch conjecture
Based on experiments Warren Hirsch conjectured in 1957 that the
diameter of the graph of a polyhedron defined by n inequalities in d
dimensions is at most n − d. Dantzig later popularized the conjec-
ture when he published it in his well-known book [25]. Finally, after
fifty three years of work by many researchers, the Hirsch conjecture
has finally been disproved by a clever, elegant construction due to
Francisco Santos of the University of Cantabria, Spain.

Santos first announced this to the world on May 10, 2010 when
submitting a title and abstract for a talk at the conference “The
Mathematics of Klee and Grünbaum: 100 years in Seattle”. Hours
later Gil Kalai posted the news on his popular blog [58]. The blog
continues to attract activity around the subject because Gil Kalai has
proposed a polymath project to attempt to finally find a polynomial
bound for the diameter (more on this later!).

In what follows we will describe the key points of Santos’ con-
struction. In his initial announcement he showed the existence of a
43-dimensional polyhedron with 86 facets and diameter at least 44

(which as we see later has now been simplified). Before we begin,
we wish to note that many researchers contributed, and continue to
contribute, to this topic, so the interested reader should consult the
survey [64] for full knowledge of what was known about the Hirsch
conjecture up until early 2010.

A key observation of Santos’ construction was an extension of
a well-known result of Klee and Walkup. They proved in [68] that
the Hirsch conjecture could be proved from just the case when
n = 2d. In that case the problem is to prove that given two vertices
u and v , that have no facet in common, one can pivot from one
to the other in d steps so that at each pivot we abandon a facet
containing u and enter a facet containing v . This was named the
d-step conjecture (see also [64, 69]). The construction of Santos’
counter-example requires a very clever variation of this result for a
family of polytopes called spindles. Spindles are polytopes with two
distinguished vertices u,v such that every facet contains either u or
v but not both. Examples of a spindle include the cross polytopes
and the polytope in Figure 2. Intuitively spindles can be seen as the

Figure 2. A 3-spindle (picture courtesy of F. Santos)
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overlap of two pointed cones (as shown in the figure). The length of
a spindle is the distance between this special pair of vertices. It is an
entertaining exercise to prove that all 3-dimensional spindles have
length three. Please try it out!

Santos’s strong d-step theorem for spindles says that from a spin-
dle P of dimension d, with n > 2d facets and length λ one can con-
struct another spindle P ′ of dimension d+ 1, with n+ 1 facets and
length λ+ 1. Since one can repeat this construction again and again,
each time increasing the dimension, length and number of facets of
the new spindle by one unit we can repeat this process until we have
n = 2d (number of facets is twice the dimension). In particular, if
a spindle P of dimension d with n facets has length greater than d
then there is another spindle P ′ of dimension n − d, with 2n− 2d
facets, and length greater than n−d which violates the Hirsch con-
jecture.

Santos wrote the bulk of the proof using the dual language of pris-
matoids, the polar duals of spindles. Under polarity, the vertices turn
into facets and vice versa. A prismatoid is thus a polytope Q with
two distinguished (parallel) facets F1 and F2 so that every vertex of
Q is contained in exactly one of F1 or F2 (see top left of Figure 3).
In terms of prismatoids, what used to be the length of the spindle, is
now measured by the distance between the facets F1, F2 where one
can move from one facet to another if they share a common face of
dimension one less than dim(Fi) Note, this is not the usual linear
programming graph, we walk from face to face (as long as they are
adjacent) rather than from vertex to vertex, and to make the dis-
tinction Santos called the facet distance from F1 to F2 its width. The
width of the prismatoid is the same as the length of its dual spindle.

The objective is to construct a sequence of prismatoids that will
eventually violate the Hirsch conjecture (remember this time on
the facet distance, which is the normal graph distance in the spin-
dle). The fundamental building block for the construction is the so
called one-point suspension or, when we see it for spindles, the dual
wedge operation (see Figure 4). Both operations were used before for
constructions of polytopes satisfying the Hirsch bound with equal-
ity [56].

Figure 3. (pictures courtesy of F. Santos)
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Figure 4. A wedge construction and its dual the one point suspension (courtesy of
Edward D. Kim)

Figure 5. The normal fan of a regular 3-cube has eight cones (left), which
coincide with the eight possible orthants (center) To visualize and study the fan,
we intersect it with the unit sphere. This yields a decomposition of S2 into eight
spherical triangles (right). The resulting map on the surface of the sphere is a
combinatorial octahedron.

Let v be a vertex of the polyhedron P , the normal cone Cv of v
is the set of all vectors c ∈ Rn such that v is an optimal solution
of the linear program max{cTx : x ∈ Rn, Ax ≤ b}. For example,
the normal cone at a vertex of a regular cube is an orthant. The
normal cone Cv of a vertex v is a full-dimensional polyhedral cone.
Two vertices v and v′ are adjacent if and only if Cv and Cv′ share
a common facet. if P is a polytope, then the union of the normal
cones of vertices of P is the complete space Rn. The set union of all
the normal cones for all vertices of the polytope defines the normal
fan. See Figure 5 for an example of these notions.

Prismatoids are easier to analyze and visualize in a smaller dimen-
sion as the Minkowski sum of the distinguished facets F1 and F2 (see
middle of Figure 3). The combinatorics of the Minkowski sum of F1

and F2 in turn can be seen from the superposition of the normal fans
of F1 and F2 (see Figure 3 third level). This is also called the com-
mon refinement of the fans. For visualization and ease of analysis,
the normal fans are often intersected with the unit sphere centered
at the origin. This gives a map on the surface of the sphere, i.e., a
decomposition of the sphere in question into spherical polyhedra.
Santos’ insight led him to see prismatoids as special superimposed
maps over a sphere of even smaller dimension (see last level of Fig-
ure 3). In this way the normal fan of a (d − 1)-polytope can be
thought of as a map on the (d − 2)-sphere. To disprove the Hirsch
Conjecture Santos needed to find a prismatoid of dimension d and
width larger than d. This task becomes finding a special pair of maps
in the (d−2) dimensional sphere that overlap in such a way that the
resulting one-skeleton has a large diameter. More precisely, given
two maps G1 and G2 in the (d − 2)-sphere, that correspond to the
prismatoid-defining facets F1,F2, the width of the prismatoid equals
two plus the minimum number of steps needed to go from a vertex
of G1 to a vertex of G2 in the (graph of the) superposition of the
two maps.

Santos used some well-known properties of the 3-dimensional
sphere S3 to construct such a pair of maps. It has been known by
topologists that S3 can be obtained by symmetrically glueing two
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solid tori along their surface via the Hopf fibration. Each of the de-
sired maps will be defined along parallel directions of one of the
tori (a torus has two fundamental directions). This allows a decom-
position of a three-dimensional sphere into the right kind of map
resulting in a five-dimensional prismatoid of width six. Santos gave
explicit coordinates for his prismatoid which can be found in his
great article [87]. The polytope is so small that all of its proper-
ties can be checked “by hand”. Finally, the polar dual of this nice
prismatoid is the spindle necessary to obtain a counterexample to
the Hirsch conjecture. Applying Santos’ strong d-step theorem for
spindles several times constructs a Hirsch counterexample that can
be explicitly recovered from his five-prismatoid. More precisely he
proved (see all missing details in the papers [87, 88])

Theorem 1. – There is a 43-dimensional polytope with 86 facets and
of diameter at least 44.

– There is an infinite family of non-Hirsch polytopes with n facets and
diameter ∼ (1 + ε)n for some ε > 0. This holds true even in fixed
dimension.

Since the first announcement and the release of Santos’ solution
there have been further developments: In [89] the authors proved
that there are no prismatoids in four dimensions that would yield
Hirsch counterexamples. Santos also showed that, using spindles
(equivalently prismatoids) of fixed dimension, one cannot hope to
get a polytope of superlinear diameter. More precisely, with spindles
of dimension five, one cannot possibly surpass the Hirsch bound
by more than fifty percent. Moreover currently the best value of
ε in the theorem is 1/20. Matschke, Santos and Weibel [77] have
recently simplified Santos’ original counterexample. The new initial
prismatoid has only 25 vertices so that we now know the Hirsch
conjecture fails in dimension 20, instead of the initial 43 dimensions
(as the number of one-point suspensions is limited). This is signif-
icant as one can write the concrete inequalities defining a polyhe-
dron with diameter larger than n − d. If you want to “touch” the
non-Hirsch polytope, the inequalities are available at http://www.cs.
dartmouth.edu/~weibel/hirsch.php?page=3.

Is there an upper bound for the diameter of polytopes which is poly-
nomial in the number of facets and the dimension? The “Hirsch-bound
barrier” has been finally broken after half a century of effort, but to-
day we do not know the answer to this important question. The best
general bound today, due to Kalai and Kleitman [61], is O(n1+logd),
but in principle it could still be possible that there is always a linear
diameter for polyhedra. In the next section we discuss recent efforts
to procure general diameter bounds, both upper and lower bounds,
for arbitrary polytopes.

1.2 Bounds for the diameter of polyhedra and a Polymath project
It has been pointed out repeatedly that the proofs of known up-
per bounds use only very limited properties of polytopes and often
hold for more abstract complexes. For example, Klee and Klein-
schmidt [69] showed that some bounds for fixed number of vari-
ables hold for the ridge-graphs of all pure simplicial complexes and
more general objects. The combinatorial-topological approach to the
diameter problem has a long history (see e.g., [72]); Adler, Dantzig,
and Murty [1, 2] and Kalai [60] and others abstracted the notion
of the graph of a polytope. This has become an important direction
of research (see [6, 42, 46, 48, 65, 76, 80] and the many references
therein). The objects one wishes to abstract are graphs of simple
polyhedra. A d-dimensional polyhedron P is simple if each of its ver-
tices is contained in exactly d of the n facets of P . It is well-known
that it is enough to consider simple polyhedra, since the largest di-
ameter of d-polyhedra with n facets must be achieved by a simple
d-polyhedra with n facets.

Figure 6. A snapshot of Gil Kalai’s blog and the Polymath3 project

A recent exciting paper of Eisenbrand, Hähnle, Razborov, and
Rothvoss [36] revisited combinatorial abstractions of polytope
graphs by defining the properties of a base abstraction graph. Sup-
pose [n] = {1, . . . , n} is an index set (intuition dictates to think
of [n] as the labels for the n facets of a polyhedron). Denote by(
[n]
d

)
the set of all d-element subsets of [n]. Let A ⊆

(
[n]
d

)
, and

E is a set of unordered pairs of A. If the graph G = (A, E) with
the vertex set A and edge set E satisfies that (1) the graph G is
connected, and (2) for each A,A′ ∈ A, there is a path from A to A′

in the graph G using only vertices that contain A ∩ A′, then we say
that G is a d-dimensional base abstraction of A on the set [n]. The
diameter of the base abstraction is the diameter of the graph G. It
should be noted that the graphs of simple d-dimensional polyhedra
with n facets are base abstractions because each of the n facets of P
is associated with a label s in [n]. Since our polyhedron P is simple,
each vertex of P is incident to exactly d facets, so it is associated
with the d-element subset of [n] consisting of the corresponding la-
bels of facets. The graph G used in the base abstraction is the graph
of the polyhedron. The first condition is satisfied since the graph of
a polyhedron is connected (in fact d-connected, by Balinski’s theo-
rem). The second condition translates into the fact that for every
pair of vertices y and z on a polyhedron P , there is a path from y
to z on the smallest face of P containing both y and z.

A key idea of Eisenbrand et al. is that the diameter of a base ab-
straction graph can be derived from another combinatorial object,
a connected layer family. A d-dimensional connected layer family on
the set [n] is a collection {F0, . . . , Fδ} of non-empty sets such that
the elements of Fi are d-subsets of [n] if i 	= j, then Fi ∩ Fj = ∅.
If i < j < k and u ∈ Fi and w ∈ Fk, then there is a v ∈ Fj such
that u ∩w ⊆ v The connected layer family has diameter δ. From
a connected layer family one can derive a base abstraction graph,
the elements of each layer Fi are its vertices and all pairs of ver-
tices u,v are connected when u ∈ Fi and v ∈ Fi+1. The diameter
of this graph would be δ. This translation in a more set-theoretic
framework allowed them to use elegant tools from extremal com-
binatorics. Indeed, a great novelty in the Eisenbrand et al.’s approach
is that there are base abstraction graphs with diameter greater thanΩ(n2/ logn), for a certain constant c. The construction makes ele-
gant use of Lovász’s local lemma applied to families of subsets form-
ing covering designs.

Eisenbrand et al. were also able to prove that the base abstrac-
tion is a reasonable generalization because it satisfies some of the
known upper bounds on the diameter of polytopes. Larman proved
in [71] that for a d-dimensional polytope P with n facets the diam-

http://www.cs.dartmouth.edu/~weibel/hirsch.php?page=3
http://www.cs.dartmouth.edu/~weibel/hirsch.php?page=3
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eter is no more than 2d−3n (shortly after this bound was improved
by Barnette [9]). This bound shows that in fixed dimension the diam-
eter must be linear in the number of facets. The best general bound
of O(n1+logd) was obtained by Kalai and Kleitman [61]. The au-
thors of [36] proved that the Larman bound and the Kalai-Kleitman
bounds hold again for their graphs.

In response to the survey [64], the paper [36] and later Fran-
cisco Santos’ solution of the Hirsch conjecture Gil Kalai initiated a
wonderful internet-meta-collaboration. The polymath 3 project was
started by Kalai and it lives within his blog [58]. We can read in
http://polymathprojects.org/ that “Polymath projects are massively col-
laborative mathematical research programs, in which a single problem,
group of problems, or other mathematical task is worked on by a large
group of mathematicians.” See [58] and Figure 6.

The online discussions have lead to many interesting and unex-
pected developments. For example, in his presentation at the Jan-
uary 2011 IPAM meeting, Nicolai Hähnle discussed a family of in-
termediate abstractions between the one in [36] (in which superlin-
ear lower bounds and quasi-exponential upper bounds are known)
and the abstraction of 1-reductions proposed by Volvosky in poly-
math3 (for which the quasi-polynomial upper bounds match, modulo
a constant in the exponent, the lower bounds found). Hähnle also
mentioned his multi-set generalization of the connected layer fam-
ily model, in which it is very easy to construct graphs of diameter
d(n−1) and he showed that this upper bounds two extremal cases:
when each layer consists of a single set, and when any of the possi-
ble

(
n+d−1
d

)
sets is used in some family (it is worth remarking that

an upper bound of d(n − d) applies to the set version in the ex-
tremal case of using all sets; but the corresponding upper bound in
the multi-set version is d(n−1)). He made a tantalizing conjecture:

Conjecture 2. The diameter of a connected layer family and thus that
of a polytope cannot exceed (d(n − 1)).

We already mentioned that the clever construction of two inter-
secting maps on the unit sphere S3 is what allowed the construction
of the five-prismatoid later used in the counterexample of the Hirsch
conjecture. The online discussion taking place in the polymath and
the work by F. Santos, T. Stephen and H. Thomas [89] motivated
another recent fascinating conjecture of Gil Kalai related to pairs of
maps in Sn that, if true, implies a polynomial bound on the diameter:

Conjecture 3. Let M1 be a red map and let M2 be a blue map drawn
in general position on Sn, and let M be their common refinement. Then
there are vertices w of M , u a red vertex of M1, v a blue vertex of M2

and two faces F,G of M such that (1) u,w ∈ F, (2) v,w ∈ G, and (3)
dim(F) + dim(G) = n.

In Santos’ construction, the red and blue maps come from red and
blue polyhedral normal fans associated to red and blue convex poly-
tope and the common refinement will be the fan obtained by taking
all intersections of cones, one from the first fan and one from the
second. An very recent paper (from September 2011) by Bonifas,
Di Summa, Eisenbrand, Hähnle, and Niemeier [17] gives even more
evidence that thinking in terms of normal fans of polytopes is a very
good idea for bounding the diameter a polyhedron P . The bound
they provided is polynomial in the dimension d and the largest ab-
solute value of a sub-determinant of the defining integer matrix A
which they denoted by Δ. More precisely,

Theorem 4 (Bonifas et al.). Let P = {x ∈ Rn : Ax ≤ b} be
a polytope where all sub-determinants of A ∈ Zn×d are bounded byΔ in absolute value. The diameter of the polyhedron P is bounded by
O(Δ2d4 log(dΔ)). If P is bounded, then the diameter of P is at most
O(Δ2d3.5 log(dΔ)).

Just like in Santos’ construction of good prismatoids, the normal
fan of the polytope plays a useful role in this bound. We consider
the normal cones of sets of vertices intersected with the unit ball
Bd = {x ∈ Rd : ‖x‖2 ≤ 1}. Note that because the polytope is as-
sumed to be simple, its normal cones are simplicial and thus the
intersection of each normal cone is a simplicial spherical simplex.
Traversing the graph of the original polytope translates into mov-
ing from one spherical simplex to the next as long as they share
a facet. The main trick in the analysis is to reason about the vol-
umes covered by the normal cones of vertices of P inside the unit
ball. As before, denote by Cv the normal cone of the vertex v .
For a set U of vertices of the polytope the volume considered
is vol(U) := vol

(⋃
v∈U Cv ∩ Bd

)
. Given two vertices u,v of the

polytope, to estimate how far apart they are we can consider vis-
iting their neighbors, and then the neighbors of their neighbors,
etc.(breadth-first search manner) until finally we find a common ver-
tex. They used the volume of the cones involved to bound how
many iterations can occur before this encounter. Clearly by the time
the volume of the two sets of vertices (i.e., the union of their solid
spherical cones) is more than half the volume of the unit ball they
must have intersected. Thus the following geometric lemma yields
the bounds on the diameter:

Lemma 5 (Bonifas et al.). Let P = {x ∈ Rd : Ax ≤ b} be a polytope
where all sub-determinants of A ∈ Zn×d are bounded by Δ in absolute
value. Let I ⊆ V be a set of vertices of the graph of the polytope with
vol(I) ≤ (1/2) · vol(Bd). Then the volume of the neighborhood N (I)
of I is at least

vol(N (I)) ≥
√

2

π
1Δ2d2.5 · vol(I).

Note that for the special case in which A is a totally uni-
modular matrix, the bounds for [17] simplify to O(d4 logd) and
O(d3.5 logd) respectively. This improves over the previous best
bound for totally unimodular matrices by Dyer and Frieze [35]. This
result suggests one should more easily obtain better bounds for the
diameter of specific structured polytopes. Indeed, some new fam-
ilies of linear programs such as classical transportation and multi-
way transportation problems have been shown to satisfy linear and
quadratic bounds respectively [18, 26].

To conclude we should remark that in a linear program the pivot-
ing path will not be arbitrary, but the objective function dictates the
pivots are monotonically increasing or decreasing, i.e., the vertices
visited are ordered by the value of the objective function. A natural
extremal question is then how long can monotone paths be in terms
of n,d (and possibly L)? For more on this interesting topic see [105]
and references therein.

1.3 Pivot rules and their bad behavior
A simplex method is governed by a pivoting rule, i.e., a method
of choosing adjacent vertices with better objective function value.
Starting with the historical 1972 construction of Klee and Minty [70],
showing that Dantzig’s original pivoting rule may require exponen-
tially many steps, researchers debunked many of the popular pivot
rules as good candidates for polynomial behavior. By 2010 almost
all known natural deterministic pivoting rules were known to re-
quire an exponential number of steps to solve some linear programs
(see [5, 105]), but three conspicuous pivot rules resisted the attacks
of researchers until then. The most famous “untamed” pivot rules
were Zadeh’s rule (also known as the least entered rule) [102], the
randomized pivot rules of Random-Edge originally proposed by G.
Dantzig, and Random-Facet proposed by Kalai [59] and in a different
form by Matousek, Sharir and Welzl [75].

http://polymathprojects.org/
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Figure 7. An example of an MDP graph encoding the process

At any non-optimal vertex, the Zadeh pivot rule chooses the de-
creasing edge that leaves the facet that has been left least often in
the previous moves. In case of ties a tie-breaking rule is used to de-
termine the decreasing edge to be taken. Any other pivot rule can
be used as a tie-breaking rule. The rule was proposed by Norman
Zadeh in a 1980 technical report from the department of opera-
tions research of Stanford University. It has now appeared reprinted
in [102]. It was known for some time that Zadeh had offered $1000
for solving this problem (see e.g., [105]). Now, the random edge
pivot rule chooses, from among all improving pivoting steps (or
edges) from the current basic feasible solution (or vertex), one uni-
formly at random. The description of Random-Facet pivoting is a bit
more complicated as there are several versions: roughly, at any non-
optimal vertex v choose one facet F containing v uniformly at ran-
dom and solve the problem restricted to F by applying the algorithm
recursively to one of its facets. The recursion decreases the dimen-
sion of the polytope at each iteration, thus it will eventually restrict
to a one-dimensional face, which is solved by following that edge.
One repeats the process until reaching an optimum.

No non-polynomial lower bounds were known until recently for
these three pivot rules. Prior evidence of exponential behavior was
given in [73, 76] that both the random edge and random facet pivot
rules do not have a polynomial bound when used in a certain class
of oriented graphs which include the graph of a polyhedron oriented
by an objective function. Morris [82] showed bad behavior existed
for random edge in the related setting of linear complementarity
problems (see also [6, 47] for more on abstract graphs). But there
was also evidence of good behavior in special cases (e.g., [7, 57])
and the random facet rule can be shown to perform an expected
subexponential number of steps in the worst case [59, 75]. This
outperforms the deterministic pivot rules so far. So the result that
these pivot rules are not always polynomial for specific simple LPs is
an exciting breakthrough in the theory of the simplex method pre-
sented in the exciting papers [40, 41] by Oliver Friedmann, Thomas
Dueholm Hansen, and Uri Zwick. See Figure 8.

Their new constructions use the close relation between simplex-
type algorithms for solving linear programs and policy iteration algo-
rithms for the stochastic 1-player games called Markov decision pro-
cesses. Markov decision processes (MDP) model sequential decision-
making in situations where outcomes are partly random and partly
under the control of a decision maker (see [13, 84]). At each time
step, the process is in some state i, and the decision maker chooses
an action j ∈ Ai that is available for state i. The process responds by
randomly moving into a new state i′, and giving the decision maker
a corresponding reward rj(i, i′). The probability that the process
enters i as its new state is influenced by the chosen state-action.
Specifically, it is given by the state transition function Pj(i, i′). Thus,

the next state i′ depends on the current state i and the decision
makerÕs action j, but given i and j, it is conditionally independent
of all previous states and actions. In all MDPs considered by Fried-
mann et al., one of the states is considered to be the initial state
of the MDP, and a different state is considered to be the terminal
state, or the sink, of the MDP. Also, the sink is reached with proba-
bility one after a finite number of steps, no matter which actions are
chosen by the controller. This is needed to avoid infinite rewards.

A policy for the decision maker is a set function p =
p1, p2, . . . , pm that specifies the state-action pi that the decision
maker will choose when in state i. A policy is positional if it is de-
terministic and history independent. A policy is optimal if it max-
imizes the total expected reward. The goal of the decision maker
is to maximize the total expected reward of all actions taken until
reaching the sink by choosing a positional policy. One of the fun-
damental results concerning MDPs (see [84]) says that every MDP
has an optimal positional policy. A key point is that one can obtain
an LP that models the MDP problem in such a way that there is a
one-to-one correspondence between policies of the MDP and ba-
sic feasible solutions of the LP, and between improving switches and
improving pivots. This one-to-one correspondence only exists when
you reach the terminal state with probability one from all states.
An MDP model is conveniently represented as a bipartite graph that
captures combinatorial information about the process (see Figure 7
for an example). Some nodes are the decision nodes that have ar-
rows going to the randomization nodes (flipping coins) with a reward
rj(i, i′) as label. The other kind of arrow, going from randomization
nodes to decision nodes, are labeled with the probabilities Pj(i, i′).

The breakthrough came in two nice papers. The team of Oliver
Friedmann, Thomas Dueholm Hansen, and Uri Zwick [41] provided
the first lower bound of the form 2Ω(nα), for some α > 0, for both
the Random-Edge and the Random-Facet pivot rule in the one-pass
variant . This paper was selected the best paper in STOC 2011.
They are now in the process of transferring their result (with a
slightly worse lower bound) to the original Random Facet algorithm
in a forthcoming paper. Using MDPs again and based on [37, 39, 41]
Oliver Friedmann constructed an exponential lower bound for the
number of steps in Zadeh’s rule [40]. Friedmann presented the key
points of their construction at IPAM in January 2011. Zadeh, now an
entrepreneur running the Perfect 10 website, made time to attend
Friedman’s presentation. He asked how explicit can one make the
construction of the examples. Friedmann noted that although large
one can easily write code to generate the problems. At the end of
the presentation Zadeh presented the $1000 check to Friedmann
(which will remain in custody of David Avis until the referee process
for journal publication is finished). See Figure 8. The constructions
in both papers amount to the construction of counters of binary
sequences. The challenge in designing such counters is making sure
that they count correctly all binary sequences of certain size under
most sequences of random choices made. Using the combinatorial
graphs as building blocks they are able to construct the required
sophisticated large MDP problem.

Are these MDP polytopes badly behaved because of their diam-
eter? No, it should be remarked that the diameter of the resulting
polytopes is actually linear. In fact, some other MDPs seem to be-
have quite nicely for other pivot rules. Yinyu Ye [101] showed that
the simplex method using Dantzig’s pivot rule (where one chooses
the entering variable with the largest reduced cost coefficient). is
strongly polynomial for the linear programs derived from Markov
Decision Processes with Fixed Discount (which is not the setting
for the other papers, but is an important case of MDPs). Ye’s result
inspired others to revisit to the classical pivot rule of Dantzig. Based
on Ye’s analysis, Kitahara and Mizuno [66, 67], have shown bounds
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Figure 8. Top picture, from left to right: Oliver Friedmann, Thomas Dueholm
Hansen, and Uri Zwick (courtesy of Dalya Jacobsen). Bottom picture, from left to
right: David Avis, Norman Zadeh, Oliver Friedmann receiving prize check, and
IPAM director Russ Caflisch (courtesy of Edward D. Kim)

for the number of pivots of the simplex method using Dantzig’s rules
that using the relative sizes of the non-zero coordinates of the ver-
tices: Given a linear program of the form max{cTx : Ax = b,x ≥ 0}
where A is a real d×n matrix, the number of different basic feasible
solutions (BFSs) generated by this version of the simplex method is
bounded by n
dγδ log(dγδ )�, where δ and γ are the minimum and
the maximum values of all the positive elements of primal BFSs and

a� denotes the smallest integer greater than a. Interestingly they
also presented a variant of Klee–Minty’s LP, for which the number of
iterations for this variant is equal to the ratio γ

δ .
The results of Friedman et al. came from thinking of pivoting in

settings other than linear programming, in their case the theory of
games. The fact is that several generalizations of linear programming
also have pivoting algorithms whose complexity is similarly unknown.
During the IPAM meeting it was evident that other communities
would also benefit from the constructions of worst-case pivot be-
havior. For example, Bernd Gärtner (ETH Zürich), who has worked
on pivoting rules for the simplex method, presented a translation of
bad-pivot behavior into the realm of machine learning. Putting to-
gether some standard techniques and constructions from polytope
theory (basically the Goldfarb cube) one can disprove a conjecture
of Hastie et al. about the maximum complexity of paths in support
vector machines [49].The lesson to be learned is that it is always
useful to look at your questions from a different perspective and
have knowledge of areas not directly related to yours!

Another topic where pivots are done in a different setting, but still
close to the simplex method, is the so called criss-cross method [43].

Criss-cross methods are pivoting methods that are allowed to go
out of the feasible region, walking not on the graph of it but rather
on the graph of the hyperplane arrangement defining it. Thus, instead
of focusing on Ax ≤ b, one considers other sign or direction of the
inequalities. Unlike the case for the simplex method, where we do
not know polynomial bounds for the diameter of the pivot graph,
the diameter of the graph of a hyperplane arrangement is easy to
determine, and it is polynomial. Thus the difficulty lies on finding the
right pivot rule. Fukuda and Terlaky proved in [44] that in the criss-
cross method there is always a sequence of at most n “admissible
pivots” (which amounts to certain sign conditions being satisfied) to
reach the optimum solution. Fukuda, Terlaky and collaborators have
considered other settings such as linear complementarity problems
(see [38] and references therein).

Let us conclude by saying that beyond the theoretical analysis of
pivot rules there are a number of things we can learn from exper-
iments. For instance, Ziegler [105] reported on studies analyzing
some of the well-known NETLIB collection of benchmark prob-
lems using the shadow boundary method, a.k.a. two dimensional
projection of polytopes. This pivot rule deserves more investiga-
tion and plays an interesting role in the smoothed analysis of linear
programs [93]. We will discuss more on this in the following section.

2 Results on other Methods
As it is well-known the first polynomial time algorithm for linear pro-
gramming was the 1979 ellipsoid method of Khachiyan [54]. Later
in Karmarkar’s paper [62] started the revolution of interior point
methods and gave an alternative proof of polynomiality of linear
programming. Nevertheless, the question remains: Is there a strongly
polynomial time algorithm which decides the feasibility of the linear system
of inequalities Ax ≤ b?

As we saw in the previous section, Simplex methods are still con-
tenders to give a positive solution to the question above, but there
are in fact many other methods possible beyond the three we men-
tioned so far. We want to review of some other LP methods, of var-
ied geometric origin, that have been proven to have polynomial-time
complexity as well. We discuss a selection of work that took place
after 2002. Later in the final part of the article, we will discuss ques-
tions about the intrinsic differential geometry of the central curves
of interior point methods. Interestingly these geometric inquiries
lead to a nice mixture of both discrete and continuous aspects of
linear optimization.

2.1 Relaxation & Randomization: Recent efficient algorithms for linear
optimization

In their now classical papers ,Agmon [3] and Motzkin and Schoen-
berg [83] introduced the so called relaxation method to determine
the feasibility of a system of linear inequalities (it is well-known
that optimization and the feasibility problem are polynomially equiv-
alent to one another). Starting from any initial point, a sequence
of points is generated. If the current point zi is feasible we stop,
else there must be at least one constraint aTx ≤ b that is vio-
lated. The constraint defines a hyperplane H. If wH is the orthog-
onal projection of zi onto the hyperplane H, choose a number λ
(normally chosen between 0 and 2), and the new point zi+1 is given
by zi+1 = zi + λ(wH − zi).

Many different versions of the relaxation method have been pro-
posed, depending on how the step-length multiplier λ is chosen and
which violated hyperplane is used. E.g., the well-known family of per-
ceptron algorithms is part of the method. A bad feature of the stan-
dard version of the relaxation method using real-data is that when
the system Ax ≤ b is infeasible, it cannot terminate, for there will
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Figure 9. The standard relaxation method projects only on given constraints (top),
Chubanov’s variation (bottom) allows for the generation of new constraints that
speed up convergence.

always be a violated inequality. The method was shown early on to
have a poor practical convergence to a solution (and in fact, finite-
ness could only be proved in some cases), thus relaxation methods
took second place behind other techniques for years. During the
height of the fame of the ellipsoid method, the relaxation method
was revisited with interest because the two algorithms share a lot in
common in their structure (see [4, 50, 94] and references therein)
with the result that one can show that the relaxation method is finite
in all cases when using rational data, and thus can handle infeasible
systems. In some special cases the method did give a polynomial
time algorithm [78], but in general it was shown to be exponential
(see [51, 94]).

In 2004, the late Ulrich Betke [16] gave a new efficient version
of the relaxation method with rational data. In fact he considers it a
mix of ideas used in relaxation and in the ellipsoid method. He works
within a spherical homogenized linear feasibility problem (SHFP), i.e.,
to find an x on the unit sphere Sd satisfying n linear inequalities
aTi x ≥ 0. The ai are assumed to be vectors on the unit sphere,
but one can reduce any standard feasibility problem into this form.
Let Q be a subset of the normal vectors ai. The set Q is said to be
nearly positively spanning if Q is affinely independent and the orthogo-
nal projection O′ of the origin O on the affine hull affQ is contained
in convQ. The distance of O′ to the origin is called the deficiency of
Q and denoted by defQ. If k = d + 1 then Q is a basis, but Betke
also used the case that dim(affQ) < d+1. We can think ofQ as the
vertices of spherical simplices (some of low dimension), the intuitive
idea is to generate a sequence of nearly positive spanning sets Qk
and a point inside them, looking for one that is a feasible solution or
finding a certificate of infeasibility, or a way to reduce the dimension
of the problem.

For a nearly positively spanning set the deficiency is equal to the
distance of the origin to its convex hull. So it may occur that the
deficiency is zero, which is an important special case. Betke says a
nearly positively spanning set is positively spanning if its deficiency is
0. Equivalently Q is positively spanning if and only ifQ is affinely inde-
pendent and O ∈ convQ. The positively spanning sets are important
for the problem (SHFP) too because, given Q ⊂ {a1, . . . , an} a pos-

itively spanning set, every x in the feasible region in fact satisfies
aTi x = 0 for all ai ∈ Q. Thus, if the cardinality of Q is d + 2, then
the instance is infeasible, otherwise the feasible region is contained
in the subspace {aTi x = 0 | ai ∈ Q} and thus the dimension of
the problem is reduced if we run into a positively spanning set of
constraints.

Let Q ⊂ Sd be a set of affinely independent points. Denote by
S(c,R) the sphere with center c and radius R. Such a sphere is said
to be touching for Q if c ∈ affQ and Q ⊂ S(c,R). Every set of
affinely independent points has a unique touching sphere. It is easy
to compute a touching sphere for given set Q. The vector set Q
is nearly positively spanning if and only if the center of its touching
sphere c ∈ convQ. In this case defQ = √1− R2.

Betke’s algorithm generates a sequence Qk of nearly positively
spanning sets. The centers of the touching sphere of Qk form the
desired sequence of points converging to a feasible point (if any). It
can be proved that they correspond to the incenters of the spherical
simplices given by the constraints ai. Betke’s algorithm is combina-
torial as there are only finitely many possible iterates. To force the
termination of the algorithm the generation is done in such a way
that the deficiency of the Qk’s is strictly decreasing. A set of trans-
formations of the spherical points must be performed to formally
make sure the geometric intuition becomes polynomial time.

In late 2010, Sergei Chubanov [23], announced a new polynomial
time algorithm to determine the feasibility of a system given in the
form (∗) Ax = b,Cx ≤ f with A a full-rank integer n × d matrix,
C an l × d integer matrix, b ∈ Zn, and f ∈ Zl. As before let P
denote the set of feasible solutions and let B(z, r) denote the open
ball centered at z of radius r in Rd. Let ai denote the i-th row of
A and ck denote the k-th row of C.

At the core of Chubanov’s method is a modification of the tradi-
tional relaxation style method. The key new idea of Chubanov’s al-
gorithm is to construct new inequalities along the way. Unlike [3, 83]
who only projected onto the original hyperplanes that describe the
polyhedron P , i.e. ckx = fk, Chubanov [23] projects onto these
new auxiliary inequalities. See Figure 9.The new inequalities are lin-
ear combinations of the input ai’s and bi’s and nonnegative linear
combinations of the ck’s and fk’s, called induced hyperplanes. Thus
if hx = δ is an induced hyperplane, we have

h =
n∑
i=1

λiai +
l∑

k=1

αkck and δ =
n∑
i=1

λibi +
l∑

k=1

αkfk

where the λi’s and αk’s are real coefficients ≥ 0. The right coeffi-
cients of these linear combinations are the result of a recursive call.

The algorithm receives as input the system Ax = b, Cx ≤ f
and a triple (z, r , ε). There are three possible outputs for the al-
gorithm: an ε-approximate solution x∗, i.e., some x∗ such that
Ax∗ = b, Cx∗ ≤ f + ε1, an induced hyperplane hx = δ that
separates B(z, r) from the solution set, or it returns two induced
hyperplanes h1 and h2 such that h1 = −γh2. During the iterations
the algorithm behaves as the standard relaxation method (i.e, there
are projections into various violated constraints) as long as the ra-
dius r is small enough. Otherwise the algorithm recursively calls
itself again with smaller and smaller r until the standard procedure
can be applied. The induced hyperplanes are not added in any way
to the system. As soon as the algorithm moves beyond that level of
the recursion, the induced hyperplanes no longer need to be held
in memory. Using this modified relaxation algorithm [23] he proved
the following intriguing lemma:

Lemma 6. There exists a strongly polynomial algorithm which either
finds a solution of a linear system Ax = b, 0 ≤ x ≤ 1, or correctly
decides that the system has no binary 0,1 solutions.
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To prove that lemma, the second idea of Chubanov is, like in
Betke’s algorithm, to work on a homogenized system.

Ax − bt = 0,
Cx − ft ≤ 0,
−t ≤ −1.

(1)

Note this system (1) is feasible if and only if (∗) is feasible. Let
(x∗, t∗) be a solution to (1). Then x∗

t∗ is a solution of (∗). Similarly,
if x∗ is a solution of (∗), then (x∗,1) is a solution of (1). Chubanov
applies his version of the relaxation method to a strengthened pa-
rameterized system

Ax − bt = 0,
Cx − ft ≤ −ε1,
−t ≤ −1− ε.

(2)

The advantage is now that any ε-approximate solution will be an
exact solution of (1), and thus will give us an exact solution of the
original system. The other two outcomes of the Chubanov relax-
ation method either show a solution of the system or that it cannot
have any integer solutions. Chubanov’s lemma only solves the linear
feasibility question or the integer feasibility question in very specific
circumstances. An easy reduction can be done to any polyhedron
to be able to use Lemma 6. This yields a (non-strongly) polynomial
algorithm for linear programming described in [22].

All we have discussed so far are deterministic algorithms, but to-
day it is undeniable that randomization helps in surprising ways to
facilitate computation. Linear programming is not immune and we
would like to mention some recent situations where randomization
plays a big role to get good theoretical guarantees. One first exam-
ple, still related to the relaxation method we just discussed above, is
from the paper by Dunagan and Vempala [34] where they present a
randomized version of the perceptron method which they can prove
runs in polynomial time.

A second fascinating nice probabilistic algorithm appears in the pa-
per [15]. D. Bertsimas and S. Vempala presented a pretty algorithm
for the problem of finding point in a convex set K ⊂ Rd specified by
a separation oracle (that is a procedure that given a point x, either
reports it is in the set K or returns a halfspace that separates the
set from x). Clearly for linear programming this is a matter simply
checking the constraints of the polyhedron. The key component of
the algorithm is sampling the convex set by a random walk. The as-
sumption is that the polyhedron is contained in an axis-aligned cube
P0 = C of width R centered at the origin and, if it is non-empty,
then it must contain a cube of width r . Letting L = log(R/r) the
algorithm proceeds as follows: Starting with the center of the con-
tainment cube, z0 and i = 0 we check whether z ∈ K. If yes, then
we stop, else we let aTx ≤ b be a violated constraint of K. Then, if
H = {x : aTx ≤ b} we set Pi+1 = Pi∩H and increase i by one. Pick
N random points y1, y2, . . . , yN from Pi+1 and set the new point
zi to be its barycenter (here N is of size polynomial or even linear
in the dimension d of the convex set). Repeat until we either find a
point inside K or i > 2dL at which point we can report that K is in
fact empty.

This algorithm is extraordinarily simple, but there are a number of
interesting results that make it possible (the reader may have noted
the similarity with the ellipsoid algorithm and its sequence of ellip-
soids). First the algorithm works because one can prove that the
volume of the enclosing polytopes Pi drop by a constant factor in
each iteration. For this the authors proved a beautiful generaliza-
tion of a classical result of Grünbaum: for a convex set K in Rd,
any halfspace that contains the centroid of K, also contains at least
1/e of the volume of K. Similarly if after 2dL iterations we have not

found a point, then the authors proved that with high probability
K is empty. The total number of calls for the separation oracle is
in fact smaller than those used for the ellipsoid method. Of course
one key task is how to actually carry on the sampling of the yi. It is
here that the authors need to use classical results on sampling from
convex sets, based on taking random walks on the set K (see [98]
and the references therein). The number of steps necessary depends
on the geometry of the convex body Pi, thus the authors maintain
the “roundness” of the body by applying a suitable affine transfor-
mation.

The smoothed analysis of algorithms is concerned with the ex-
pected running time of an algorithm under slight random perturba-
tions of the input. The smoothed analysis of linear programming by
Spielman and Teng [93] (and later with significant improvements by
R. Vershynin [99]) have provided new probabilistic insights into why
we observe a good practical performance of the simplex algorithm.
They demonstrated that on a slight random perturbation of an arbi-
trary linear program, the simplex method finds the solution after a
walk on polytope(s) with expected length polynomial in the number
of constraints n, the number of variables d, and the inverse standard
deviation of the perturbation 1/σ . Another related development
was the 2006 randomized algorithm by Kelner and Spielman [63].
They reduce the input linear program to a special form in which we
merely need to certify boundedness. As boundedness does not de-
pend upon the right-hand-side vector, they run the shadow-vertex
simplex method with a random right-hand-side vector. Even when
the shadow vertex fails it gives a way to modify the perturbation
and repeat the process. They proved that the number of iterations
is polynomial with high probability. Once more there is nice geom-
etry involved to prove the result. One needs to prove that given a
polytope Ax ≤ b which is round enough, if one makes a polynomially
small perturbation to b, then the number of edges of the projection
of the perturbed polytope onto a random two-dimensional subspace
is expected to be polynomial. In this setting, one uses the perturbed
polytope to decide what to do in the simplex walk of the original
data.

The idea of perturbation is a very important development and one
can hope that the the same techniques of integral geometry used by
Spielman-Teng’s smoothed analysis of linear programming and the
Spielman-Kelner polynomial algorithm, could perhaps be adapted to
show that a Gaussian perturbation of an arbitrary linear program
always has expected diameter bounded by the parameters in the
program and the inverse of the perturbation variance. This is still to
be seen, but at the same time the ideas of smoothed analysis are now
also connected to interior point methods in [33] by showing that a
slight random relative perturbation of the linear program has small
condition number with high probability. In the next subsection we
discuss other interesting insights in the geometry of interior point
methods.

2.2 Going through the interior: curvature of central paths and interior
pivoting

For the rest of the article we will consider the pair of linear pro-
gramming problems in primal and dual formulation:

Maximize cTx subject to Ax = b and x ≥ 0; (3)

Minimize bTy subject to ATy− s = c and s ≥ 0. (4)

Note that here, unlike the earlier parts of the article, A is an m×n
matrix. The primal-dual interior point methods are among the most
computationally successful algorithms for linear optimization. While
the simplex methods follow an edge path on the boundary, the
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Figure 10. A view of the entire central curve of a linear program

interior point methods follow the central path. The famous central
path is given by the following system of equations

Ax = b , ATy− s = c, and xisi = λ for i = 1,2, . . . , n. (5)

The system has several properties: For all λ > 0, the system of poly-
nomial equations has a unique real solution (x∗(λ),y∗(λ), s∗(λ))
with the properties x∗(λ) > 0 and s∗(λ) > 0. The point x∗(λ) is
the optimal solution of the logarithmic barrier function for (3), which
is defined as

fλ(x) := cTx + λ
n∑
i=1

logxi.

Any limit point (x∗(0),y∗(0), s∗(0)) of these solutions for λ → 0 is
the unique solution of the complementary slackness constraints and
thus yields an optimum point. Traditionally the central path is only
followed approximately by interior point methods with some kind
of Newton steps. Similarly, tradition dictates the central path con-
nects the optimal solution of the linear programs in question with
its analytic center within one single cell, with si ≥ 0 (a cell of the
arrangement is the polyhedron defined by a choice of signs in the
constraints).

Nevertheless, from the algebraic-geometric point of view, the tra-
ditional central path is just a part of an explicit algebraic curve that
extends beyond a single feasibility region (given by sign constraints
on variables). Instead of studying the problem with only constraints
si ≥ 0, one can ask for all feasible programs arising from any set of
sign conditions siεi0, εi ∈ {≤,≥}, 1 ≤ i ≤ m. There are at most(
m−1
n

)
such feasible sign vectors; (A,b) is said to be in general posi-

tion if this number is attained. Then the central curve passes through
all the vertices of a hyperplane arrangement. See Figure 10. In what
follows we talk about the central curve when we wish to emphasize
the fact we look at it as an algebraic curve. This kind of thinking goes
back to pioneering work by Bayer and Lagarias [11, 12] in the early
days of interior point methods.

There are a number of aspects of the central curve one can study.
The traditional primal and dual central parts are portions of the
projections of the above equations to one single set of variables and
one can ask what are the new defining equations. In [27] the authors
computed the degree, arithmetic genus and defining prime ideal of
the central curve and their primal dual projections. These invariants
are expressed in terms of the matroid of the input matrix A, which

reinforces the old relationship between (oriented) matroids and lin-
ear programming. In practical computations, interior point methods
follow a piecewise-linear approximation to the central path.

One way to estimate the number of Newton steps needed to
reach the optimal solution is to bound the total curvature of the
central path. The intuition is that curves with small curvature are
easier to approximate with fewer line segments. This idea has been
investigated by various authors (see, e.g., [81, 92, 97, 103]), and has
yielded interesting results. For example Vavasis and Ye [97] found
that the central path contains no more than n2 turning points. This
finding led to an interior-point algorithm whose running time de-
pends only on the constraint matrix A. Thus, in a way, curvature can
be regarded as the continuous analogue of the role played by the
diameter in the simplex method.

In [28] Dedieu, Malajovich, and Shub investigated the differential
geometric properties of the central curve of interior point meth-
ods. Their main theorem is as follows: Let (A,b, c) be as above with
(A,b) in general position. Then the average total curvature of the
primal, the dual, and the primal-dual central paths of the strictly fea-
sible polytopes defined by (A,b) is at most 2π(n − 1) (primal), at
most 2πn (dual), and at most 2πn (primal-dual), respectively. In
particular, it is independent of the number m of constraints. The
bounds they obtained come from first reducing the curvature esti-
mates to an integral geometry problem (expected number of inter-
sections of the Gauss curve with a random plane), and then to the
estimation of the number of roots of a particular polynomial system.
More recently [27] obtained bounds for the total curvature in terms
of the degree of the Gauss maps of the curve. For the interesting
case of two dimensions the total curvature of a plane curve can be
bounded in terms of the number of real inflection points, and they
derive a new bound from a classical formula due to Felix Klein which
gives a slight improvement to the bound in [28].

Of course, for practical applications the more relevant quantity is
not the average total curvature but rather the curvature in a single
feasible region! This has been investigated by A. Deza, T. Terlaky and
Y. Zinchenko in a series of papers. Dedieu et al. conjectured that
the curvature (in a single cell) could only grow linearly in the dimen-
sion. Deza, Terlaky and Zinchenko [30] constructed central paths
that are forced to visit small neighborhoods near of all vertices of a
cube, “a la Klee-Minty”. Their construction shows the Dedieu et al.
conjecture is false. In [29] they proved that even for d = 2 the total
curvature grows linearly in the number of facet constraints. They
conjectured the following curvature analogue of diameter:

Conjecture 7 (continuous Hirsch conjecture). The curvature of a
polytope, defined as the largest possible total curvature of the associated
central path with respect to the various cost vectors, is no more than
2πm, where m is the number of facets of the polytope.

The name of the conjecture suggests the similarity with the dis-
crete simplex method. Deza, Terlaky and Zinchenko (see [31]) inves-
tigated other analogies between the continuous and combinatorial
methods to linear optimization They proved a continuous analogue
of the “d-step theorem” of Klee and Walkup, saying that to prove
the continuous Hirsch conjecture in general you only need to es-
tablish it in the case when the number of constraints is twice the
dimension. It is worth noting that their construction in [30] does
not contradict the continuous Hirsch conjecture, since they need
to add exponentially many (redundant) constraints to force the cen-
tral path do what they want, and thus the number of constraints is
larger than the number of facets. Although the average value for the
curvature for bounded cells is known to be linear, we do not have a
polynomial bound for the total curvature in a single cell. During the
IPAM conference Yuriy Zinchenko presented a conjecture, by him,
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Deza and Terlaky, made in 2006: The central path curvature of the
feasible region cannot exceed πd(n− d). It is somewhat similar to
the more recent Hähnle conjecture. By the way, since we have good
linear bounds for the average total curvature of the central path, we
should also think about the average diameter among bounded cells of
a hyperplane arrangement! Thanks to Santos’ counterexample the
diameter of polytopes is not always equal to the predicted differ-
ence between number of facets and the dimension, but it might still
be true on average, a problem suggested by Deza et al. (see [29]).

Another development in the geometry of interior point methods
for linear programming came from the notions of hyperbolic poly-
nomials and hyperbolic cones. A homogeneous polynomial p(·) is
said to be hyperbolic if there exists a direction e with p(e) ≠ 0 and
that for each vector x, the univariate polynomial t � p(x + te) has
only real roots. The roots of the polynomial p(λe−x) are called the
eigenvalues of x. An interesting geometric object is the the hyperbol-
icity cone of a (hyperbolic) polynomial; this is the set of all points x
with positive eigenvalues. The hyperbolicity cone is a convex cone.
A hyperbolic program aims to minimize a linear functional over an
affine subspace of a real space intersected with the hyperbolicity
cone of a polynomial p. This is a class of convex optimization prob-
lems that contains linear programming. Indeed, the traditional set up
of standard linear programs max cTx,Ax = b,x ≥ 0 is using the hy-
perbolicity cone of the polynomial p = x1x2 . . . xn with respect to
the all-ones vector. All vectors in the positive orthant are part of the
hyperbolicity cone. The cone of positive definite matrices is another
key example of hyperbolic cone, with p = det(x). The hyperbolic
program in this case is a semidefinite program.

To solve a linear program the idea in [85, 86] is use hyperbolic
programs to create a sequence of relaxations to the initial linear
program. Taking p(x) = x1x2 . . . xn one must consider the high-
order univariate derivatives of the polynomial p(x + te) then eval-
uate them at t = 0. If p was hyperbolic in direction e, the resulting
derivatives are also hyperbolic in the direction e. It turns out the
hyperbolicity cone defined by the i-th derivative polynomial con-
tains the original cone. Thus by taking higher-order derivatives of
the polynomial p, a nested family of cones can be obtained and the
cones become tamer as additional derivatives are taken, the largest
cone being just an open halfspace. As one moves closer toward the
original cone the cones start resembling the non-negative orthant.
From these cones one tries to recover the LP solution. For instance,
depending on the choice of the direction e, it can happen that the i-
th hyperbolic relaxation has no optimal solution (problem becomes
unbounded). So we can define the i-th central swath as Sw(i) the set
of directions of feasible directions e which have an optimal solution
in the i-th hyperbolic relaxation. The traditional central path turns
out to be the (n−1)-th central swath, but all others swaths are not
necessarily one-dimensional curves. They can be used to create a
sequences of points going to the optimum solution, where the steps
of iteration are guided by the swath points, until one converges to
the optimum of the linear program. In a way, these generalize inte-
rior point methods as the step at each iteration is not restricted to
follow only the central path. See [86].

To conclude this survey we would like to mention attempts to use
what one would call “combinatorial interior point methods”. Unlike
the simplex method (that makes steps along the edges of polyhe-
dron) or the interior point methods (that follow a non-linear path)
the method takes linear steps in directions that belong to the faces
of feasible region or across its interior. For instance, [21] presented
such a method with an experimental implementation with interest-
ing results. More recently Barasz and Vempala [8] presented another
example. Their main idea is to walk along a piece-wise linear path.
At the beginning of each step one is at a feasible vertex and must

shoot a ray through the interior of the polytope averaging between
the increasing edges that we have at hand. The average ray can be
uniform, or randomized. One moves along this ray until hitting a
facet of the polytope, one then finds a way of getting back to a ver-
tex. They have proved their algorithm is strongly polynomial when
applied to the notoriously difficult deformed products of [5].

It will be interesting to see more results on all these topics, the
future is full of new possibilities and interesting problems!
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Discussion Column

Günter M. Ziegler

Comments on New Insights into the
Complexity and Geometry of Linear
Optimization

When in May 2010 Francisco Santos announced his counter-example
to the Hirsch conjecture, this was immediately picked up on Gil
Kalai’s blog, where a desperate Stanford graduate student posted
“That’s my whole PhD work going to trash!”.
Although this may sadly have been true if the thesis project was very
specific, say one of many clever attempts to prove the conjecture,
Kalai and Santos immediately responded that the counter-example
certainly shouldn’t discourage the student or anyone else to con-
tinue work on this topic, or to join the community. Indeed, Santos’
breakthrough is not one that kills a field by solving its key prob-
lem, but it puts the spotlight onto a central and important research
area, and hopefully gets many people (included, but not restricted to,
clever Stanford graduate students) to work on exactly that. Even af-
ter Santos’ breakthrough, the lower bound for the maximal diameter
of the graphs of polytopes is linear in the number of facets/variables,
the upper bound is exponential (if, say, the dimension is fixed). In
particular, we still have no idea about worst-case complexity of an
optimal simplex algorithm.
There had been very little visible progress in the analysis of the
Hirsch conjecture and the pertinent combinatorics of polytopes and
their graphs since Kalai’s subexponential bounds more than twenty
years ago and Spielman & Teng’s work on smoothed analysis more
than ten years ago. Thus we have every right for enthusiasm in a
situation where several unexpected substantial breakthroughs from
quite different directions surface nearly simultaneously – as outlined
in Jesús De Loera’s survey. The Hirsch conjecture still poses the
greatest challenge in the area, namely to determine the asymptotics
of the function that measures the maximal graph diameter for a d-
dimensional polytope with n facets. Besides that, I am most excited
by the work by Oliver Friedmann and coauthors about exponential
lower bounds for various randomized pivot rules, which may have
more of a danger of “killing the field” by solving all the key prob-
lems – but on the other hand opens a powerful new avenue in the
connection to Markov decision processes.
How far have we gotten in our understanding of convex polytopes
and the simplex algorithm and the complexity of linear program-
ming? My claim would be that “you ain’t seen nothing yet”. We have
no real understanding of the geometry, the combinatorics, topolog-
ical aspects and the spectral properties of high-dimensional poly-
topes. All these properties are relevant – for example, Santos’ work
has a distinctive topological core, which remains to be explored fur-
ther. Random processes ask for spectral analysis, as expansion prop-
erties govern the behaviour of random walks on the graph. Progress
will come from bringing these aspects together.
One aspect I keep wondering about is the geometry of high-
dimensional polytopes/problems. In what sense are high-dimensional
polytopes “round”? Indeed, the upper bounds on subdeterminants
imposed by Bonifas et al. translate into lower bounds on the volumes
in normal cones, which may be interpreted as an (integral) version of
roundness (namely, lower bounds on curvature), and “round” poly-
topes may behave differently from others. For example, according
to work by Figiel et al. (1977) and very recent updates by Barvinok
(arXiv, August 2011), sufficiently round polytopes have many facets

http://www.optimization-online.org/DB_HTML/2010/05/2632.html
http://www.optimization-online.org/DB_HTML/2010/05/2632.html


14 OPTIMA 87

and/or many vertices. Also, celebrated work by Bárány & Pór (2001)
is based on the intuition that high-dimensional random 0/1 polytopes
are quite “round” (approximating a convex body with lower curva-
ture bounds) and because of this have more than exponentially many
facets. On the other hand, Milman and Kalai have suggested that we
should picture high-dimensional polytopes like amoebae with ten-
tacles, since so little of their volume is concentrated near to the
vertices. My own study of 2-dimensional shadows of “real life” lin-
ear programs shows both round and pointed characteristics. How
do typical polytopes look like? How do real-life linear programs look
like? How do extremal polytopes look like? Don’t take the 3-cube
(or the 3D Klee–Minty cube) as a realistic image!

Another remarkable aspect is the great variety of algorithmic
ideas beyond the “good old simplex algorithm,” both old and new,
now come into play, possibly should be connected. These are as
diverse as the criss-cross paradigm for the simplex algorithm, vari-
ous interior point strategies, but also ellipsoid algorithms, relaxation
ideas, etc. But are they really separate? How are they connected,
how do they compare? Can you, for example, obtain Chubanov’s
polynomial time algorithm using the ellipsoid method? This was
suggested at IPAM by Fritz Eisenbrand. Not only new algorith-
mic ideas, but also old methods need to be reevaluated and con-
nected.

De Loera’s paper is a theory survey. Does the work he reports
about have practical significance? I would say that the answer is
clearly no for now – but also clearly yes, it will. Santos says that
his work “breaks a psychological barrier, but for applications it is
absolutely irrelevant.” This remains to be seen: Let me remind you
that “Gomory cuts” were invented in the early sixties as a purely
theoretical tool for finiteness proofs in integer programming; prac-
tical tests proved them to be utterly useless. In the nineties they
were re-evaluated by Balas, Ceria and Cornuéjols and to everyone’s
greatest surprise found to be excellent. They were then immedi-
ately integrated into commercial and public domain libraries codes
for integer and mixed-integer programming. Perhaps similarly, the
fact that TSP-polytopes have very small diameter was declared to be
utterly useless when it was discovered by Padberg & Rao (1974). Is
it really? Thus, the impact of the new ideas sketched in this survey
remains to be seen, and it will be seen, sooner or later. If we work
hard, sooner.

Günter M. Ziegler, Institute for Mathematics, FU Berlin,
Arnimallee 2, 14195 Berlin, ziegler@math.fu-berlin.de

Announcements

MIP 2012

We are pleased to announce that the 2012 workshop in Mixed In-
teger Programming (MIP 2012) will be held July 16–19, 2012 at the
University of California, Davis. The 2012 Mixed Integer Programming
workshop will be the ninth in a series of annual workshops held in
North America designed to bring the integer programming commu-
nity together to discuss very recent developments in the field. The

workshop series consists of a single track of invited talks and also
features a poster session as an additional opportunity to share and
discuss recent research. Registration details and a call for participa-
tion in the poster session will be announced later.

Confirmed speakers
Gennadiy Averkov (Otto-von-Guericke-Universität Magdeburg),
Sam Burer (The University of Iowa), Philipp Christophel (SAS),
Jesús A. De Loera (University of California (Davis), Alberto Del
Pia (ETH Zurich), Friedrich Eisenbrand (EPFL), Ricardo Fuka-
sawa (University of Waterloo), Vineet Goyal (Columbia Univer-
sity), Yongpei Guan (University of Florida), Volker Kaibel (Otto-
von-Guericke-Universität Magdeburg), Kiavash Kianfar (Texas A&M
University), Mustafa Kılınç (University of Pittsburgh), Fatma Kılınç-
Karzan (Carnegie Mellon University), David Morton (The University
of Texas at Austin), Ted Ralphs (Lehigh University), Edward Roth-
berg (Gurobi Optimization), Siqian Shen (University of Michigan),
Renata Sotirov (Tilburg University), Dan Steffy (ZIB and Oakland
University), Alejandro Toriello (University of Southern California),
Christian Wagner (ETH Zurich)

Claudia D’Ambrosio, CNRS – École Polytechnique
Matthias Köppe, UC Davis

Jim Luedtke, University of Wisconsin-Madison
François Margot, Carnegie Mellon University

Juan Pablo Vielma, University of Pittsburgh

(MIP 2012 Organizing Committee
mip2012@math.ucdavis.edu)

Further information: http://www.math.ucdavis.edu/mip2012/

Third Conference on Optimization
Methods and Software

Crete, May 13–17, 2012. This international conference aims on bring-
ing together leading experts in the fields of optimization and com-
putational methods to discuss recent advancements and trending
topics.

Dates and Deadlines:
Abstract submissions: January 15, 2012
Notification of acceptance: February 1, 2012
Early registration: March 31, 2012

Registration Fee:
Early registration: EUR 350 (EUR 150 for students and accompany-
ing persons); late registration: EUR 400 (EUR 200 for students and
accompanying persons).

Conference Organizers:
Oleg Burdakov (Sweden), Conference Chair; Panos Pardalos (USA),
Conference Chair; Luis Nunes Vicente (Portugal), Program Com-
mittee Chair, Alper Yildirim (Turkey), Organizing Committee Chair;
Masao Fukushima (Japan); Andreas Griewank (Germany); Michael
Hintermüller (Germany); Michal Kocvara (GB); Yurii Nesterov (Bel-
gium); Panos Pardalos (USA); Liqun Qi (China); Andrzej Ruszczynski
(USA); Ekkehard Sachs (Germany); Marco Sciandrone (Italy); Philippe
Toint (Belgium); Stefan Ulbrich (Germany); Luis Nunes Vicente (Por-
tugal); Yinyu Ye (USA); Alper Yildirim (Turkey); and Ya-xiang Yuan
(China).

Further information: http://www.ise.ufl.edu/cao/OMS12/OMS_2012/

ziegler@math.fu-berlin.de
mailto:ziegler@math.fu-berlin.de
mip2012@math.ucdavis.edu
mailto:mip2012@math.ucdavis.edu
http://www.math.ucdavis.edu/mip2012/
http://www.ise.ufl.edu/cao/OMS12/OMS_2012/
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ISMP 2012 in Berlin

The organizers of the 21st International Symposium on Mathematical
Programming (ISMP 2012) have the great pleasure of inviting you to
Berlin, Germany, August 19–24, 2012. ISMP is the world congress of
mathematical optimization and is held every three years on behalf of
the Mathematical Optimization Society (MOS).

Call for Sessions and Presentations
Presentations on all theoretical, computational and practical aspects
of mathematical programming in one of the clusters listed below are
welcome. Invited and contributed presentations will be organized in
parallel sessions, each session consisting of three talks. Interested
session organizers are invited to contact the cluster chairs for their
particular topic.

The deadline for submitting invited sessions is March 1, 2012. The
deadline for submitting titles and abstracts of presentations is April
15, 2012. There is a one talk per speaker policy at ISMP, i.e., no
participant will be able to register more than one presentation. Ab-
stract submission will be done online, via the conference web page
at www.ismp2012.org.

Clusters and Cluster Chairs
• Approximation and Online Algorithms

(Leen Stougie, David P. Williamson)
• Combinatorial Optimization

(Jochen Könemann, Jens Vygen)
• Complementarity and Variational Inequalities

(Michael C. Ferris, Michael Ulbrich)
• Conic Programming

(Raphael Hauser, Toh Kim Chuan)
• Constraint Programming

(Michela Milano, Willem-Jan van Hoeve)
• Derivative-free and Simulation-based Optimization

(Luis Nunes Vicente, Stefan Wild)
• Finance and Economics

(Thomas F. Coleman, Karl Schmedders)
• Game Theory

(Asu Ozdaglar, Guido Schäfer)

• Global Optimization
(Christodoulos A. Floudas, Nikolaos V. Sahinidis)

• Implementations and Software
(Tobias Achterberg, Andreas Wächter)

• Integer and Mixed-Integer Programming
(Andrea Lodi, Robert Weismantel)

• Life Sciences and Healthcare
(Gunnar W. Klau, Ariela Sofer)

• Logistics, Traffic, and Transportation
(Marco E. Lübbecke, Georgia Perakis)

• Mixed-Integer Nonlinear Progamming
(Sven Leyffer, François Margot)

• Multi-Objective Optimization
(Jörg Fliege, Johannes Jahn)

• Nonlinear Programming
(Philip E. Gill, Stephen J. Wright)

• Nonsmooth Optimization
(Amir Beck, Jérôme Bolte)

• Optimization in Energy Systems
(Alexander Martin, Claudia Sagastizábal)

Venue of the ISMP 2012 opening ceremony: Konzerthaus am Gendarmenmarkt, Berlin (Photo: Christoph Eyrich)

www.ismp2012.org
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• PDE-constrained Optimization and Multi-Level/Multi-Grid Meth-
ods (Matthias Heinkenschloss, Michael Hintermüller)

• Robust Optimization
(Aharon Ben-Tal, Dimitris Bertsimas)

• Sparse Optimization and Compressed Sensing
(Michael Saunders, Yin Zhang)

• Stochastic Optimization
(Shabbir Ahmed, David Morton)

• Telecommunications and Networks
(Andreas Bley, Mauricio G. C. Resende)

• Variational Analysis
(René Henrion, Boris Mordukhovich)

Plenary and Semi-Plenary Speakers
Nikhil Bansal (TU Eindhoven), Richard G. Baraniuk (Rice University),
Dimitris Bertsimas (Massachusetts Institute of Technology), Xiao-
jun Chen (Hong Kong Polytechnic University), Michael P. Friedlan-
der (University of British Columbia), Jorge Nocedal (Northwestern
University), Teemu Pennanen (University of Jyväskylä), Amin Saberi
(Stanford University), Claudia Sagastizábal (CEPEL (Rio de Janeiro),
Katya Scheinberg (Lehigh University), Christof Schütte (Freie Uni-
versität Berlin), Rekha R. Thomas (University of Washington), Robin
Thomas (Georgia Institute of Technology), Rakesh V. Vohra (North-
western University), and Robert Weismantel (ETH Zürich).

Important Dates
March 1, 2012: Deadline for submitting invited sessions
April 15, 2012: Abstract submission deadline
June 15, 2012: Early registration deadline
August 19, 2012: Opening ceremony at Konzerthaus am Gendar-

menmarkt

MOPTA 2012

July 30 – August 1, 2012 Lehigh University, Rauch Business Center,
Bethlehem, PA 18015

MOPTA aims at bringing together a diverse group of people from
both discrete and continuous optimization, working on both theo-
retical and applied aspects. There will be a small number of invited
talks from distinguished speakers and contributed talks, spread over
three days. Our target is to present a diverse set of exciting new de-
velopments from different optimization areas while at the same time
providing a setting which will allow increased interaction among the
participants. We aim to bring together researchers from both the
theoretical and applied communities who do not usually have the
chance to interact in the framework of a medium-scale event.

Confirmed plenary speakers
Kurt M. Anstreicher (U. of Iowa), Edgar Blanco (MIT-CTL), An-
drew V. Goldberg (Microsoft Research), Mark S. Roberts (U. of
Pittsburgh), Michael Trick (Carnegie Mellon), Santosh S. Vempala
(Georgia Tech), Henry Wolkowicz (U. of Waterloo), and Stephen
J. Wright (U. of Wisconsin).

Organizing Committee
Luis F. Zuluaga (Chair), Tamás Terlaky, Katya Scheinberg, Ted Ralphs,
Robert Storer, Aurélie Thiele, Larry Snyder, Eugene Perevalov, and
Frank E. Curtis.

Further information
http://coral.ie.lehigh.edu/~mopta/

We look forward to seeing you at MOPTA 2012!
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Application for Membership
I wish to enroll as a member of the Society. My subscription is for my personal use
and not for the benefit of any library or institution.

I will pay my membership dues on receipt of your invoice.
I wish to pay by credit card (Master/Euro or Visa).

Credit card no. Expiration date

Family name

Mailing address

Telephone no. Telefax no.

E-mail

Signature

Mail to:
Mathematical Optimization Society
3600 Market St, 6th Floor
Philadelphia, PA 19104-2688
USA

Cheques or money orders should be made
payable to The Mathematical Optimization
Society, Inc. Dues for 2011, including sub-
scription to the journal Mathematical Pro-
gramming, are US $ 90. Retired are $ 45.
Student applications: Dues are $ 22.50.
Have a faculty member verify your student
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above address.
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