
MATHEMATICAL OPTIMIZATION SOCIETY NEWSLETTER

OPTIMA107
Issue 107 January 2025

Miguel F. Anjos, Chair’s Column 1
Note from the Editors 1
Andrea Lodi, ML-Augmented MIP Solving 2
Axel Parmentier, Combinatorial Optimization Augmented Machine

Learning: A Brief Introduction with Applications in Operations
Research 7

Miguel Anjos, MOS Awards 2024 14
ICCOPT 2025 16
Imprint 16

Chair's Column
Dear colleagues,

The year 2024 was a very good year for the MOS. One of the high
points was our 25th International Symposium on Mathematical
Programming (ISMP) in Montreal, Canada, in July. This was our
first post-pandemic symposium and with 1562 registered partic-
ipants, including 498 students, it was a great success. On behalf
of the MOS, I thank Charles Audet, the whole GERAD team, and
the members of the ISMP organization and scientific committees
for their sustained efforts in planning and running the Symposium.
I also thank all the MOS members who attended and contributed to
this success. I heard frommany of you that the event was enjoyable
and fruitful.

I am delighted to report that with well over 1500 members, the
MOS is amply beyond the threshold of 1000members required to ap-
ply for the status of “full large member” of ICIAM, the International
Council for Industrial and Applied Mathematics. Our application
for this elevated status was approved in November and we are now
recognized as one of the larger societies within ICIAM. Thank you
to Sam Burer for leading this effort. This recognition raises our
profile worldwide and will, I hope, lead to greater engagement with
ICIAM and with other professional societies.

Some of you may not know that the MOS hosts and supports
technical sections. The Stochastic Programming Society (SPS)
brings together researchers interested in decision-making under
uncertainty, and the Mixed Integer Programming Society (MIPS)
encompasses those focusing on optimization problems involving
discrete decisions. I am delighted that the MOS welcomed in 2024
a third technical section, the newly formed Bilevel Optimization So-
ciety. You can follow its progress at https://bileveloptimization.org.
Thank you to everyone listed on the website for helping to make
this happen!

We also held our triennial elections in 2024. As many of you al-
ready know, our newly elected Council members are: Katya Schein-
berg (Chair-Elect), Fatma Kılınç-Karzan (previously Member-at-
Large and now Treasurer-Elect), and Merve Bodur, Fabian Bastin,
Jorge Vera, and Xiaojun Chen (Members-at-Large). Congratulations
to each one of them, and thank you to our other colleagues who
agreed to run. As per the MOS bylaws, the members-at-large have
been in post since the ISMP while Katya and Fatma take up their
roles in August 2025, with Samuel Burer remaining as Treasurer,
David Morton as Chair of Executive Committee, Katya as Vice-Chair,
and I as Chair until then. Thank you also to our outgoing Council
members, John Birge, Marina Epelman, AndreasWächter, Angelika
Wiegele, and Wolfram Wiesemann for their years of service to the
MOS.

The Council has been working on improvements for the MOS
and the services it provides to you, its members. We will keep you
informed about new developments, and we are always open to your
comments, ideas and suggestions.

In closing, I wish you an optimal year in 2025!
Miguel F. Anjos, University of Edinburgh

miguel.f.anjos@ed.ac.uk

Note from the Editors
This edition of OPTIMA focuses on the theme of Machine Learn-
ing and Optimization. Decision-making and data are deeply inter-
connected, and there are many exciting opportunities for tightly
integrating the two through machine learning and optimization.
This issue features two articles showcasing advancements at the
intersection of these two areas.

In the first article, Andrea Lodi explores how Machine Learning
is revolutionizing Mixed-Integer Programming (MIP) by introducing
innovativemethods to improve algorithmic efficiency and scalability.
The second article, by Axel Parmentier, examines the integration of
combinatorial optimization with Machine Learning, highlighting its
practical applications in solving real-world, data-driven challenges.

We would also like to remind our readers about the upcom-
ing ICCOPT 2025 conference, one of the leading global events in
continuous optimization.

We hope you find these contributions inspiring and, as always,
we welcome your feedback and suggestions for future topics.

Sebastian Pokutta, Editor
Swati Gupta, Co-Editor

Omid Nohadani, Co-Editor

https://bileveloptimization.org
mailto:miguel.f.anjos@ed.ac.uk

2 OPTIMA 107

ML-Augmented MIP Solving
Andrea Lodi

This short paper summarizes and provides useful pointers to the
recent wave of work on the use of machine learning to augment the
capabilities of the mixed-integer programming (MIP) technology,
with special emphasis to the current and potential improvements
in the MIP solvers.

1 Introduction
The impressive success that machine learning (ML) has achieved
in the last 10 to 15 years in areas like image recognition, machine
translation, games and language processing led a number of other
scientific disciplines to question the use of modern statistical learn-
ing within the real of their techniques.

Combinatorial optimization (CO) has been no exception to this
trend and the interplay between CO and ML has developed steadily
since the middle of the previous decade. Of course, notable at-
tempts within this interplay predates this latest wave (see, e.g., the
survey by Smith (1999)), but the surge of work in the last decade
represents the core of this short paper. Even more specifically, we
concentrate on the attempts of using ML for improving the mixed-
integer programming (MIP) technology, a fundamental asset to solve
CO problems through a variety of commercial (FICO, 2023; Gurobi
Optimization, LLC, 2023; IBM, 2023) and open-source (Gamrath
et al., 2020) MIP solvers.1 This area is often referred to as ML-
augmented MIP and has been the subject of the detailed survey
by Scavuzzo et al. (2024) of which this short paper is a reasoned
summary.

The remainder of the paper is organized as follows. In the next
section, we discuss the basic principles of the MIP algorithmic
technology and the way this is implemented in MIP solvers. Then,
Section 3 reviews the way in which each of the MIP building blocks
introduced in Section 2 has benefited from ML. Finally, in Section 4,
we draw some brief conclusions and we outline some perspectives.

2 Solving MIP Problems
We are considering a MIP in the form2

z∗ = min cTx

subject to Ax ≥ b,

xj ∈ ℤ≥ 0 ∀j ∈ 𝒜,

xj ∈ {0, 1} ∀j ∈ ℬ,

xj ≥ 0 ∀j ∈ 𝒞,

(1)

where A ∈ ℚm×n, c ∈ ℚn, b ∈ ℚm, and (𝒜,ℬ, 𝒞) define a partition
of the variable index set {1,… , n}.

The basic observation is that formulation (1) is NP-hard while
dropping the integrality requirement on each variable xj such that
j ∈ 𝒜∪ℬ leads to a problem, the linear programming (LP) relaxation,
that is polynomially solvable. Moreover, solving the LP relaxation
gives an optimistic approximation of the MIP optimal value, i.e.,
zLP ≤ z∗, where xLP is the optimal solution value of the LP relax-
ation. Now, it is intuitive to see that the difference between zLP and
z∗ can be seen as a proxy of the quality of the LP relaxation: The
closer the two values, the better the approximation provided. So,

the algorithmic technology for solving MIPs develops around two
questions. First, what can we do to strengthen such a relaxation?
Second, what can we do if despite such strengthening some gap
remains?

The algorithmic technology in the current MIP solvers is com-
posed by four major building blocks.
• Preprocessing/Configuration. This is the collection of techniques
that are applied before the MIP core resolution starts. The idea
is to clean the formulation by removing some redundancy3 so
as to reduce the size of the problem and, more importantly, to
exploit implications and characteristics of the data to make the
constraints and the variable bounds in (1) tighter. In addition,
the analysis performed in the preprocessing might be used to
configure algorithmic decisions in the attempt of solving the MIP
faster.4

• Cutting Planes Generation. This is the main tool for strengthening
the LP: linear inequalities that are valid for the convex hull of
feasible solutions but might be violated by the solution of the
LP relaxation, say ̄x, are added to formulation (1) in rounds, i.e.,
the LP relaxation is solved each time new cutting planes remove
(separate) ̄x from the feasible region of the MIP, thus potentially
improving zLP at each round. This scheme, called the cutting
plane algorithm, originates on the work of Gomory (1958, 1960)
and has revolutionized MIP computation in the late 90s.5

• Branching. The two previous building blocks take care of the LP
strengthening. However, in most of the practical cases, the ef-
fectiveness of cutting planes (or cuts) generation reduces with
the number of rounds applied and the numerical stability of the
resulting LP can be affected, so one stops the strengthening
process before the entire gap between zLP and z

∗ is closed. Then,
the exactness of the approach is guaranteed by the implicit enu-
meration scheme that splits the original MIP into subMIPs: given
̄x such that (x̄j − ⌊ ̄xj⌋) > 0 for some j ∈ 𝒜 ∪ ℬ, two subMIPs are
created by augmenting the original MIP with either the constraint
xj ≤ ⌊x̄j⌋ or the constraint xj ≥ ⌈ ̄xj⌉. Of course, x̄ is infeasible for
both the newly created subMIPs, while the optimal solution of
the original MIP will belong to one of the two. This scheme is
recursively applied for each subMIP and it is easy to visualize it
as a tree search where each subMIP is a branching node created
by the addition of one constraint, see Figure 1. This leads to the
exact algorithm originally devised by Land and Doig (1960) and
known as branch and bound (B&B).6 The complete enumeration
of all possible subMIPs is avoided by appropriate bounding con-
siderations that allow to discard nodes that cannot lead to an
optimal solution.

• Primal Heuristics. The framework composed by the three build-
ing blocks discussed above takes care of the dual component of
MIP, i.e., deals the blue trajectory in Figure 1 that describes the
zLP evolution. However, the optimality proof is obtained when a
primal, i.e., feasible solution of the problem, say ̃x, with the same
value of the best dual bound is computed. One can wait for ̃x to
be computed naturally by monotonically restricting the solution
space of the subMIPs via branching but this is generally slow.
Thus, to allow a fast converge, the red trajectory in Figure 1 is
obtained by running a number of specialized algorithms within
the MIP resolution. Those algorithms are called primal heuris-
tics and we distinguish them depending on their computational
requirements, in which part of the scheme are invoked, etc.7

January 2025 3

Value of LP
relaxation at
root node

OPT

Objective value

Dual bound: min. value of
LP relaxation at frontier

Primal bound: value
of best solution so far

Gap

Search tree nodes

•

•
•

2.2 1.0

7.3
x4=0 x4=1

x1=0 x4=0 x4=1

x2=0 x2=1

Figure 1. The branch-and-bound scheme for MIP (Picture courtesy of Elias Khalil)

In summary, MIP solvers solve MIP (1) by integrating in a sophisti-
cated and reliable way the cutting plane and the branch-and-bound
algorithms. This integration requires a number of algorithmic de-
cisions that could benefit significantly by statistical learning as
reviewed in the next section.

We conclude the section by noting that the current generation
of MIP solvers extends its attention to more general classes of opti-
mization problems than those described by (1), where the objective
function or constraints can be nonlinear. The technology as pre-
sented here vastly applies to those classes too with very significant
distinctions associated with potential lack of convexity.8 Some of
the attempts of improving the MIP technology that we survey in this
paper are in fact useful (and applied) by MIP solvers to those more
general classes, which is the reason why we adopted the notation
MIP instead of MILP, where the “L” stands for linear.

3 ML-augmented MIP
Bengio et al. (2021) identified two major opportunities where mod-
ern statistical learning could help MIP technology by leveraging
data. First, some of the algorithmic decisions of a MIP solver are
simply too costly to make from the computational standpoint. In
other words, one would know how to make a specific decision ef-
fectively but that would require too much time, a time that could
be excessive with respect to how much that decision is relevant
within the overall process. Second, for some other algorithmic de-
cisions, instead, we do not have a good mathematical understand-
ing and we are currently making them through human-learned
rules.

The question is then how ML can help in both of these cases,
and two types of learning algorithms have been used so far. On
the one side, one can cast the case in which there is knowledge of
how to effectively make a decision as a learning by demonstration.
There is an expert, in this case an algorithm,9 and we can observe
its decisions and try to imitate them. This configures a supervised
learning task where, once the ML model has been trained offline,
at inference time the MIP decision will be made in a fraction of the
time required by the expert, hopefully with good approximation. On
the other side, if we do not have a deep understanding on how to
characterize the quality of a decision, then we could make the data
speak and learning by exploration. In this case, the ML model can
be trained to make decisions and observe their impact by collecting
for each decision a reward, so as to develop a decision policy that

maximizes the reward cumulatively. This approach is in the real of
reinforcement learning.

Due to space limitations, we will not be able here to give a
proper introduction to ML techniques for which we refer to Bengio
et al. (2021) and Scavuzzo et al. (2024) and the references thereafter.
However, we will summarize the learning process, i.e., the process
of training an ML model for its task. Technically, training is in itself
an (inexact) optimization process characterized by
(i) Optimization algorithms, i.e., algorithms (generally) from con-

tinuous nonconvex optimization that are used to minimize
the loss with respect to the expert or maximize the collected
reward. The algorithm optimizes the parameters (or variables
in optimization jargon) of the ML model.

(ii) Hyper-parameters, i.e., the parameters that do not belong to
the ML model itself but influence the learning scheme, e.g.,
number of iterations, learning rate, etc.

(iii) Data collection, i.e., the phase in which the data used by ML is
collected.

(iv) Online vs offline learning, i.e., if the data collection happens
during the execution of the learning scheme or precedes it.
In the latter case, the learning happens offline after the data
collection and the ML model is executed once the learning
has completed.

(v) Train, validation and test datasets, i.e., the split of the data used
by ML to learn the model, tune the hyper-parameters and
evaluate the model quality, respectively.

(vi) Overfitting, i.e., the phenomenon that is associated with ex-
ploiting the training data “too much”. This appears when the
quality of the prediction on the training set is significantly
superior to that on the test set.

Before finally discussing how the learning process outlined above
can be applied to the MIP building blocks presented in the previous
section, we need to ask how to represent the MIP so as ML models
can be used. In other words, what data should be used and how?
Of course, this question is tailored to the learning task that one
wants to solve and to four desirable properties for such represen-
tation, namely (1) Permutation invariance, i.e., permuting the order
of the variables and/or constraints should leave the representation
unchanged; (2) Scale invariance, i.e., it is preferred to keep values
within controlled ranges, which helps the learning process; (3) Size
invariance, i.e., the size of the representation should not depend
on the size of the instance; and (4) Low computational cost, i.e., low
cost of extracting, storing and processing data.

4 OPTIMA 107

+ · · · +

+ · · · +

...

+ · · · +

...
...

Figure 5: The bipartite graph representation of an MILP.

4.2 Representing constraints individually

Analogously to variables, a description of the problem’s constraints may be needed. Here, we re-
fer both to original problem constraints and additional valid constraints that can be added as cuts.
A constraint representation is necessary in two cases. First and undoubtedly, whenever the task
requires a decision over said constraints (e.g., which cuts to add). Second, the bipartite graph rep-
resentation of MILPs discussed in the previous section (see Figure 5) also calls for a description of
the constraints, even in the case where they are to be aggregated at a later stage.

Gasse et al. [36] first proposed the bipartite graph representation using a small number of descriptors
for the constraint nodes. In particular, they use the cosine similarity12 with the objective coefficients,
the constraint right-hand-side, and LP information such as basis status and dual bound. This type
of concise descriptions of the constraints is frequently used for the learning tasks associated with
branching or primal heuristics.

In the case of cut selection, a more detailed description is preferred. Paulus et al. [73] extend the
graph representation of Gasse et al. [36] with metrics that are typically considered in cut selection,
such as violation, objective parallelism or sparsity. Wang et al. [89] describe each cut with a single
vector of classical cut scores (see. e.g., [90]). In the case of Turner et al. [87], the classical cut scores
are intrinsically taken into account in the definition of their learning task (see Section 3.3). For this
reason, they use a graph representation of the model with a small amount of variable and constraint
descriptors.

4.3 Representing a (sub-)MILP

To conclude, it is worth observing that some decision tasks are formulated at an instance or node
level, therefore needing a global representation of the MILP and perhaps also the solving process.
One possible approach is to aggregate variable and constraint descriptors coming from the bipartite
graph representation. Liu et al. [63] use the average of the variable descriptors, while Labassi et al.
[60] concatenate the average variable descriptors and the average constraint descriptors.

Other approaches include the one of Khalil et al. [54], who, in the context of scheduling of primal
heuristics, build a vector representation of the current node. This representation includes compar-
isons to the root node and context on the node’s position within the tree. Great focus is put on
information coming from the LP solution, such as the objective value, average fractionalities, and
statistics on the constraint activity. Berthold et al. [13, 14] build representations that are more spe-
cialized to the particular configuration task. We refer to their work for a more detailed discussion of
the problem descriptors.

4.4 Notes on architecture

Expressivity versus speed. In the context of machine learning, model size refers to the number of
parameters and operations that define the mapping function f(·,✓). Larger models allow us to learn
more complex relationships between input and output. However, there is a clear trade-off between

12The cosine similarity between two vectors a and b of the same length is defined as a · b/||a||2||b||2, that
is, their dot product divided by the product of their norms.

21

minx c1x1 cnxn

a11x1 a1nxn ≤ b1

amnx1 amnxn ≤ bm

C1

Cm

a11

amn

x1

xn

Figure 2. The bipartite graph representation of a MIP (Picture courtesy of Scavuzzo et al. (2024))

Three main representation trends have been established in the
literature and characterized by Scavuzzo et al. (2024). The tradeoff
that needs to be found is associated with the desirable properties
just discussed.
• Khalil et al. (2016) use descriptors gathered in a vector of fixed
size. Those descriptors aggregate information whose length
would otherwise depend on the problem size, e.g., constraint
coefficient statistics, min and max ratios of aij and bi (for system
Ax ≥ b in (1)).

• Gasse et al. (2019) use the bipartite graph representation of the
constraint matrix A depicted in Figure 2. The advantage is that
such representation has a straightforward and effective map-
ping into the so-called graph neural networks (GNNs). Each node
of the graph is embedded in a vector of fixed size with all rele-
vant characteristics of the node (either variable or constraint)
and the GNN recursively embeds the vectors associated with
neighborhood nodes so as capture the structure of the matrix.
Such a recursion is based on aggregation and combination often
obtained by a feed-forward NN and one iteration of the process
is calledmessage passing.10

• Zarpellon et al. (2021) take a somehow different approach focus-
ing on the importance of historical information collected in the
B&B tree (during execution). Thus, the focus is on tree charac-
teristics, e.g., average branching depth, pseudocosts statistics,
conflicts, etc.
We are finally ready to review some of the work that has been

done so far to improve the MIP solving building blocks as presented
in Section 2 though not exactly in that order.

3.1 Preprocessing/Configuration
This is so far the area registering the highest ML impact on the
solvers. The reason is that many of the preprocessing/configuration
decisions can be cast as classification and supervised learning ben-
efits from good experts and a lot of data. The first work in the
literature is probably that of Kruber et al. (2017) where the authors
looked at the decision of applying or not Dantzig–Wolfe decompo-
sition to a given MIP. Instead, the first work integrated within a
MIP solver has been that of Bonami et al. (2018, 2022) concerning
linearization of mixed-integer quadratic programming problems
(MIQPs), where the objective function of formulation (1) is quadratic.
For MIPQs, in most of the cases, the MIP technology allows to lin-
earize the quadratic objective function (at the price of adding extra
variables and constraints (McCormick, 1976)) and reformulate the
problem as a MILP. We do not have a mathematical understanding
of when linearizing is a goop idea but the effect of doing or not

doing that can be dramatic in terms of computing time to solve
(or not solving at all) the resulting instance. Bonami et al. (2018,
2022) suggested to simply make the data speak, i.e., they collected
some significant amount of data by solving each instance with and
without linearization (the best version becomes the artificial ex-
pert to imitate) and they trained a support vector machine model
to predict if the linearizing is a good idea within the commercial
MIP solver CPLEX IBM (2023). This methodology has been imple-
mented and is currently the default method of choice for CPLEX
since version 12.10. Since that remarkable success, ML approaches
for preprocessing and configuration were applied to several other
decisions like which simplex pricing rule to use (Hendel et al., 2019),
which scaling method to apply (Berthold and Hendel, 2021), if using
or not local cuts (Berthold et al., 2022), etc.

3.2 Branching
This is by far the area in which more work has been devoted, i.e., to
improve branching by ML approaches. The reason is that branch-
ing is a fundamental component that, on the one side, we still do
not understand very well, i.e., for which we do not have a clear
mathematical characterization, and, on the other side, the most
effective heuristic rules we have are computationally very expen-
sive. Several types of decisions connected to branching have to be
made, but the one is currently considered the most crucial is that of
selecting at each node the variable to branch on, known as variable
selection. Indeed, many variables xj, j ∈ 𝒜 ∪ ℬ are likely to take a
fractional value in the LP relaxation of any node and to guarantee
completeness to the branch-and-bound scheme it is sufficient to
select one. However, in order to close the gap between primal and
dual bounds fast (see Figure 1) selecting an effective variable is
crucial. For this purpose, the most effective heuristic, called strong
branching, simulates the branching operation on each one of the
candidate (fractional) variables and selects that whose effect in
terms of dual bound improvement is stronger. It is easy to see that
if implemented in this way, strong branching is far too expensive, so
MIP solvers are using several work limits (reduced set of candidate
variables, LPs not solved to optimality, etc.) and they use strong
branching only at the beginning of tree search exploration while
later settling for using pseudocosts, essentially the average of the
effect of branching on each variable within the tree.

Then, it was natural since the middle of the 2010 decade to
look into approximating strong branching through ML. This has
been the goal of a few influential papers (Alvarez et al., 2017, 2016;
Khalil et al., 2016) that have shown that learning was possible in
that context by exploiting various supervised learning approaches.

January 2025 5

Though, the first paper able to produce results competitive to the
state-of-the-art solvers was that of Gasse et al. (2019). There, the
use of GNNs associated with the bipartite graph representation of
the constraint matrix (see Figure 2) turned out to be especially ef-
fective to capture the effect of branching on a variable with respect
to constraints and in connection with the neighboring variables,
i.e., those involved in the same constraints. The work of Gasse et al.
(2019) has been influential not only for branching (with significant
follow up work), but also to highlight the GNNs effectiveness for
MIP, with many more examples of their use for other MIP learning
tasks.

Several other tasks associated with the tree search design and
exploration have been considered in the literature, for example,
node selection (Labassi et al., 2022; Yilmaz and Yorke-Smith, 2021),
though the most intriguing of the current (and future) research
directions is that of going beyond imitating strong branching, for
example through reinforcement learning (Etheve et al., 2020; Scav-
uzzo et al., 2022) or incorporating the information collected withing
tree search (Zarpellon et al., 2021).

3.3 Primal Heuristics
The area of primal heuristics has also been a very active playground
for ML-augmented MIP. Conceptually, the methodologies designed
for this task can be split into three main categories: (a) guiding
a heuristic search with a starting predicted solution, (b) solution
improvement via a learned neighborhood selection criterion, and (c)
learning a schedule to pre-existing heuristic routines. For (a) and
(b), the important concept is the one of large neighborhood search
(LNS): Optimize an auxiliary MIP of smaller size constructed by
reducing the feasible region of the original MIP through fixing the
value of some of the variables and optimizing the rest.11 For (a), the
idea is to produce a (partial) assignment of the binary variables in
a binary or mixed-binary MIP (i.e., ℬ ≠ ∅) that can then be used to
guide the search, see, e.g., Ding et al. (2020). Often, this is obtained
by starting from a set of collected solutions. For (b), the goal is to
identify substructures of the problem that can be used to decom-
pose it into smaller, more manageable sub-MIPs, see, e.g., Song
et al. (2020). Finally, for (c), the idea is to decide within the arsenal
of primal heuristics that any solver has (tens of primal heuristics)
the order in which they have to be executed and for how long, see,
e.g., Chmiela et al. (2021).

3.4 Cutting Planes Generation
As discussed in the previous section, cuts are valid inequalities that
separate the optimal solution of an LP relaxation from the convex
hull of feasible MIP solutions. MIP solvers have a variety of algo-
rithms that produce valid cuts, so at each round many cuts could
be potentially added to the LP relaxation with the drawback already
anticipated of making the LP too large and numerically unstable.
However, as for branching, there is no mathematical understanding
of which cuts are stronger than others, especially because their
effect is likely not individual but as a group. MIP solvers have in-
ternal cut selection routines that are designed to limit this issue
but, worse than for branching, there is nothing like strong branch-
ing, i.e., there is no expert to imitate even if heuristic. This is the
reason why the significant effort to use ML in the context of cuts
selection is admittedly still at the demonstration level and has been
concentrated on single-cut selection, i.e., deciding which single

cut among the group generated in a round should be added. In
this way, the problem can be framed as a Markov decision process
and two approaches have been considered. Namely, Paulus et al.
(2022) used imitation learning and essentially their expert is the
extension of the strong branching idea to cuts: the effect of each
cut is simulated by solving an LP, while Tang et al. (2020) used
reinforcement learning, which allows to potentially go beyond the
greedy look-ahead of one step at the price of more complex training
convergence due to the size of the action space and the sparsity of
the reward function.12

4 Limitations, Open Problems and Opportunities
The work reviewed in this paper has given in a relatively short
amount of time significant evidence that the use of statistical learn-
ing can have very positive effects on the MIP technology. Some of
the methods that have been designed are already used by the com-
mercial and noncommercial solvers, which is remarkable. Some
others, for example the work on branching, have shown strong po-
tential but there is still a gap to be closed before an implementation
into the solvers became possible. There are two main reasons that
are slowing down this adoption phase.

First, training is often performed by using data associated with
specific classes of MIP instances, which leads to lack of models’
generalization, i.e., the ability of a model to effectively work outside
of the distribution it has been trained on. As discussed, the GNN
architecture used for branching captures local information about
the formulation, so it is inherently biased towards exploiting the
specific characteristics of a MIP class. This is its strength and it
allows to provide an effective approximation of strong branching
without performing it, provided that the GNN model is trained sep-
arately for each MIP class it should be applied to. In other words,
the GNN model in Gasse et al. (2019) trained on, say, set covering
instances accurately predicts (strong) branching on instances of the
same class (and nicely generalizes with respect to the size of the
instances) but performs poorly on, say, facility location problems.
This behavior limits the adoption of a GNN predictor for branching
inside a MIP solver because, in general, MIP solvers are designed
to run the same algorithm – in the so-called “default mode” – for
any MIP instance they receive in input. One could argue that such
a default-mode requirement is too strong in practice, for example
because a company using MIP technology tends to solve over and
over the same class of problems, not changing class every day,
but currently this is the way MIP development works. Thus, it is
an open problem to achieve generalization to the entire class of
MIP instances, which would likely require to design ML models
using an effective combination between data coming from the MIP
formulations (as done by GNNs) and from the branch-and-bound
execution, potentially combining offline and online learning (Khalil
et al., 2016; Zarpellon et al., 2021).

The second reason that is affecting the adoption of ML in MIP
software is technological: many of the methods that have proved
successful so far use NNs whose training and deployment is espe-
cially effective on GPUs. This is a problem because, instead, MIP
technology runs on CPUs. Training NNs on GPUs would not be a
major limitation because, at least in the case of supervised learning,
training generally happens offline. However, using NNs at inference
time, for example at any node of the branch and bound, requires the

6 OPTIMA 107

exchange of information between these two computing architec-
tures, which is somehow cumbersome and inefficient. So, the open
problem is twofold: on the methodological side, designing ML mod-
els that parsimoniously use NNs and can efficiently run on CPUs
(see, for example, Gupta et al. (2020)), and, on the technological
side, designing more efficient CPU/GPU communication.

We conclude the paper bymentioning that, besides the evidence
already acquired of the benefits of augmenting MIP technology by
statistical learning methods, there are two opportunities that pro-
vide even more hope to pursue this research direction.

On the one side, the MIP technology has started to use more
and more the so-called restarts, i.e., the algorithm’s execution is
stopped because lack of progress is detected and restarted with a
different configuration of the algorithmic parameters in the attempt
of making it more effective. Currently, this restart mechanism can
be seen as a classifier: if the solver in default mode has not been
able to solve the instance at hand with a sort of predefined effort,
then the instance is labeled “difficult” and another solver configu-
ration is used. To the best of our knowledge, however, there is no
sophisticated use of the data collected during this online learning
phase, which looks like a wasted opportunity. Furthermore, the
restart scheme provides a clear mechanism to collect data for each
single instance, so the opportunity is to design a collection that is
targeted to specific algorithmic approaches to be applied after the
difficulty of the instance has been assessed. In other words, the
open question is what data to collect, so that a better (configuration
of the) algorithm can be executed, and which one.

On the other side, there is remarkable appetite in industrial
applications for making MIP solvers more effective in reoptimizing
an instance that has changed only minimally, for example, with
slight modifications to the demand in unit commitment (Álinson
S. Xavier, 2020) or vehicle routing (Morabit et al., 2024) problems.
In these cases, it is conceivable that some portion of the solution
process, including the solution itself, can be reused, instead of
executing any algorithm from scratch. Once again, this clearly calls
for exploiting data and augmenting MIP through modern statistical
learning.

Andrea Lodi, Jacobs Technion-Cornell Institute,
Cornell Tech and Technion – IIT,
2 West Loop Road, New York, NY 10044, USA
andrea.lodi@cornell.edu

Notes
1. Two more general surveys about the interplay are presented by Bengio et al.
(2021) and Kotary et al. (2021).
2. This notation is relatively standard, see, e.g., Wolsey (2020), to which we
refer for a general introduction to MIP.
3. Redundancy might come from formulating (1) through modeling languages
and appears when data is revealed.
4. The reader is referred to Savelsbergh (1994) for a structured overview of
preprocessing.
5. The reader is referred to Cornuéjols (2008) for cutting planes in MIP.
6. A structured overview of branching schemes is presented by Linderoth and
Savelsbergh (1999).
7. The forthcoming book by Berthold et al. (2025) is fully devoted to primal
heuristics for MIP.
8. Of course, nonconvexity is present in general due to integrality requirements
but that type is special and somehow “easy” to treat by the described relaxation
mechanism.

9. In other words, differently from the classical ML cases in games, image
recognition, etc. the expert is not a human.
10. The reader is referred to Cappart et al. (2023) for a detailed overview of GNNs
and their impact in CO.
11. The reader is referred to Berthold et al. (2025) for details on LNS primal
heuristics.
12. The reader is refereed to Deza and Khalil (2023) for a detailed survey on ML
for cut generation.

References
Álinson S. Xavier, Feng Qiu, S. A. (2020). Learning to solve large-scale
security-constrained unit commitment problems. INFORMS Journal on
Computing, 33(2):739–756.

Alvarez, A. M., Louveaux, Q., and Wehenkel, L. (2017). A machine learning-
based approximation of strong branching. INFORMS Journal on Computing,
29(1):185–195.

Alvarez, A. M., Wehenkel, L., and Louveaux, Q. (2016). Online learning for
strong branching approximation in branch-and-bound. Working paper.

Bengio, Y., Lodi, A., and Prouvost, A. (2021). Machine learning for combina-
torial optimization: a methodological tour d’horizon. European Journal of
Operational Research, 290(2):405–421.

Berthold, T., Francobaldi, M., and Hendel, G. (2022). Learning to use local
cuts.

Berthold, T. and Hendel, G. (2021). Learning to scale mixed-integer pro-
grams. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 3661–3668.

Berthold, T., Lodi, A., and Salvagnin, D. (forthcoming, 2025). Primal Heuris-
tics in Integer Programming. Cambridge University Press.

Bonami, P., Lodi, A., and Zarpellon, G. (2018). Learning a classification of
mixed-integer quadratic programming problems. In Procedings of the
International Conference on Integration of Constraint Programming, Arti-
ficial Intelligence, and Operations Research (CPAIOR), volume 15, pages
595–604. Springer.

Bonami, P., Lodi, A., and Zarpellon, G. (2022). A classifier to decide on the
linearization of mixed-integer quadratic problems in CPLEX. Operations
Research, 70(6):3303–3320.

Cappart, Q., Chételat, D., Khalil, E. B., Lodi, A., Morris, C., and Velic�kovic�,
P. (2023). Combinatorial optimization and reasoning with graph neural
networks. Journal of Machine Learning Research, 24(130):1–61.

Chmiela, A., Khalil, E., Gleixner, A., Lodi, A., and Pokutta, S. (2021). Learn-
ing to schedule heuristics in branch and bound. Advances in Neural
Information Processing Systems, 34:24235–24246.

Cornuéjols, G. (2008). Valid inequalities for mixed integer linear programs.
Mathematical Programming, 112(1):3–44.

Deza, A. and Khalil, E. B. (2023). Machine learning for cutting planes in inte-
ger programming: A survey. In International Joint Conference on Artificial
Intelligence, volume 32, pages 6592–6600. ijcai.org.

Ding, J.-Y., Zhang, C., Shen, L., Li, S., Wang, B., Xu, Y., and Song, L. (2020).
Accelerating primal solution findings for mixed integer programs based
on solution prediction. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 1452–1459.

Etheve, M., Alès, Z., Bissuel, C., Juan, O., and Kedad-Sidhoum, S. (2020).
Reinforcement learning for variable selection in a branch and bound
algorithm. In Proceedings of the International Conference on Integration of
Constraint Programming, Artificial Intelligence, and Operations Research
(CPAIOR), volume 17, pages 176–185. Springer.

FICO (2023). FICO Xpress Optimizer.
Gamrath, G., Anderson, D., Bestuzheva, K., Chen, W.-K., Eifler, L., Gasse,

M., Gemander, P., Gleixner, A., Gottwald, L., Halbig, K., et al. (2020). The
SCIP optimization suite 7.0.

Gasse, M., Chételat, D., Ferroni, N., Charlin, L., and Lodi, A. (2019). Exact
combinatorial optimization with graph convolutional neural networks.
Advances in Neural Information Processing Systems, 32.

Gomory, R. E. (1958). Outline of an algorithm for integer solutions to linear
programs. Bulletin of the American Mathematical Society, 64:275–278.

mailto:andrea.lodi@cornell.edu

January 2025 7

Gomory, R. E. (1960). An algorithm for the mixed integer problem. Technical
Report RM-2597, The Rand Corporation.

Gupta, P., Gasse, M., Khalil, E., Mudigonda, P., Lodi, A., and Bengio, Y. (2020).
Hybrid models for learning to branch. Advances in neural information
processing systems, 33:18087–18097.

Gurobi Optimization, LLC (2023). Gurobi Optimizer Reference Manual.

Hendel, G., Miltenberger, M., and Witzig, J. (2019). Adaptive algorithmic
behavior for solving mixed integer programs using bandit algorithms. In
Operations Research Proceedings 2018, pages 513–519. Springer.

IBM (2023). IBM ILOG CPLEX Optimizer.

Khalil, E., Le Bodic, P., Song, L., Nemhauser, G., and Dilkina, B. (2016).
Learning to branch in mixed integer programming. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 30(1), pages 724–731.

Kotary, J., Fioretto, F., Hentenryck, P. V., and Wilder, B. (2021). End-to-end
constrained optimization learning: A survey. In International Joint Confer-
ence on Artificial Intelligence, volume 30, pages 4475–4482. ijcai.org.

Kruber, M., Lübbecke, M. E., and Parmentier, A. (2017). Learning when to
use a decomposition. In Proceedings of the International Conference on In-
tegration of Constraint Programming, Artificial Intelligence, and Operations
Research (CPAIOR), volume 14, pages 202–210. Springer.

Labassi, A. G., Chételat, D., and Lodi, A. (2022). Learning to compare nodes
in branch and bound with graph neural networks. Advances in Neural
Information Processing Systems.

Land, A. H. and Doig, A. G. (1960). An automatic method of solving discrete
programming problems. Econometrica, 28:497–520.

Linderoth, J. T. and Savelsbergh, M. W. (1999). A computational study of
search strategies for mixed integer programming. INFORMS Journal on
Computing, 11:173–187.

McCormick, G. P. (1976). Computability of global solutions to factorable
nonconvex programs: Part I—convex underestimating problems. Mathe-
matical Programming, 10(1):147–175.

Morabit, M., Desaulniers, G., and Lodi, A. (2024). Learning to repeatedly
solve routing problems. Networks, 83(3):503–526.

Paulus, M. B., Zarpellon, G., Krause, A., Charlin, L., and Maddison, C. (2022).
Learning to cut by looking ahead: Cutting plane selection via imita-
tion learning. In International Conference on Machine Learning, pages
17584–17600. PMLR.

Savelsbergh, M. P. (1994). Preprocessing and probing techniques for mixed
integer programming problems. ORSA Journal on Computing, 6:445–454.

Scavuzzo, L., Aardal, K., Lodi, A., and Yorke-Smith, N. (2024). Machine learn-
ing augmented branch and bound for mixed integer linear programming.
arXiv:2402.05501.

Scavuzzo, L., Chen, F. Y., Chételat, D., Gasse, M., Lodi, A., Yorke-Smith, N.,
and Aardal, K. (2022). Learning to branch with tree MDPs. Advances in
Neural Information Processing Systems.

Smith, K. A. (1999). Neural networks for combinatorial optimization: A re-
view of more than a decade of research. INFORMS Journal on Computing,
11(1):15–34.

Song, J., Lanka, R., Yue, Y., and Dilkina, B. (2020). A general large neighbor-
hood search framework for solving integer linear programs. Advances in
Neural Information Processing Systems, 33:20012–20023.

Tang, Y., Agrawal, S., and Faenza, Y. (2020). Reinforcement learning for
integer programming: Learning to cut. In International Conference on
Machine Learning, pages 9367–9376. PMLR.

Wolsey, L. A. (2020). Integer Programming. John Wiley & Sons.

Yilmaz, K. and Yorke-Smith, N. (2021). A study of learning search approxi-
mation in mixed integer branch and bound: Node selection in SCIP. AI,
2(2):150–178.

Zarpellon, G., Jo, J., Lodi, A., and Bengio, Y. (2021). Parameterizing branch-
and-bound search trees to learn branching policies. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pages 3931–3939.

Combinatorial Optimization Augmented Machine
Learning: A Brief Introduction with Applications
in Operations Research
Axel Parmentier

Combinatorial optimization augmented machine learning (COAML)
is a novel and rapidly growing field that integrates methods from
machine learning and combinatorial optimization to tackle data-
driven problems that involve both uncertainty and combinatorics.
These problems arise frequently when firms seek to leverage large
and noisy datasets to better optimize their operations. COAML typ-
ically involves embedding combinatorial optimization layers into
neural networks and training them with decision-aware learning
techniques. This article provides an overview of the field, covering
its main applications, algorithms, and theoretical foundations. We
notably illustrate the techniques with the contribution that won the
2022 EURO meet NeurIPS 2022 vehicle routing competition.

1 Introduction
Using machine learning algorithms to solve combinatorial opti-
mization problems has been a growing trend in the last few years.
Consider a generic combinatorial optimization problem

min
y ∈𝒴(x)

f 0(y, x) . (1)

Here x denotes an instance in the set 𝒳, and 𝒴(x) denotes the set
of feasible solutions y of x. We focus here in problems with finite
but combinatorial 𝒴(x).

The classic approach in combinatorial optimization is to design
algorithms that can solve the problem for any instance x in 𝒳. Dis-
tributional information over 𝒳 is typically ignored. This convention
is reflected in the notations, and the instance x would typically be
omitted in the notation of the objective function f 0.

Machine learning does not consider instances x independently
anymore, but consider them as the realizations of a random vari-
able X. We introduce a hypothesis classℋ of policies h ∶ x ∈ 𝒳 ⟼
y ∈ 𝒴(x). Learning means finding the best policy in ℋ, i.e., the
policy that minimizes the risk

min
h ∈ℋ

ℛ(h) = 𝔼X[f 0(h(X), X)], (2)

where the expectation is taken with respect to the distribution ℙX

of X. In machine learning, this distribution is typically unknown, but
we have access to a training set x1,… , xn of instances drawn from
ℙX. Learning algorithm thus typically minimize the empirical risk

min
h ∈ℋ

ℛ̂n(h) =
1
n

n

∑
i= 1

f 0(h(xi), xi) . (3)

Learning can also be supervised. The training set may contain
pairs (xi, ̄yi) of instances xi with a target solution ̄yi. One then intro-
duces a loss ℒ(y, ̄y) that quantifies the difference between y and
̄y. The supervised learning problem minimizes this loss over the
training set

min
h ∈ℋ

1
n

n

∑
i= 1

ℒ(h(xi), ̄yi) . (4)

One critical element for the making such approaches practical is
the choice ofℋ. If we do not put any restriction onℋ, then, given a

http://arxiv.org/abs/2402.05501

8 OPTIMA 107

new x, an optimal policy will return an optimal solution of (1). This
requires to solve the resulting combinatorial optimization problem,
and there is nothing to learn. We therefore generally restrict our-
selves to a setℋ = {hw ∶ w ∈ 𝒲} of policies parametrized w in𝒲,
where𝒲 is a subset of ℝd𝒲 for some d𝒲 in ℕ.

Using a neural network hw with parameters w seems natural.
However, classic neural networks which alternate linear regression
layers with non-linear but analytical activation functions cannot
make prediction in combinatorial spaces out of the box, and a de-
coder is generally needed to rebuild a solution y ∈ 𝒴(x). A common
strategy in the literature consists in embedding such a neural net-
work in a constructive heuristic (Bengio et al., 2021). For instance,
on a traveling salesman problem application, the neural network
predicts the “best” vertex to add to the current partial tour until a
full tour is obtained. Unfortunately, constructive heuristics tend to
perform poorly on combinatorial optimization problems and the re-
sulting algorithm is generally not competitive with state-of-the-art
combinatorial optimization algorithms.

COAML delegates the reconstruction of y to a combinatorial
optimization oracle ŷ that solves the linear problem

̂y(𝜽) = argmax
y ∈𝒴(x)

𝜽⊤y, (5)

where we have omitted x in the arguments of ŷ(𝜽) for notational
simplicity. The linear objective of (5) presupposes an embedding
of 𝒴(x) in ℝd(x) for some d(x) that may depend on x. A statistical
model 𝜑w ∶ x ∈ 𝒳 → 𝜑w(x) ∈ ℝd(x) is used to predict the direc-
tion 𝜽 for a given x. The resulting parametrized family of policies
is

ℋ𝒲 = {hw ∶ x ↦ ̂y ∘ 𝜑w(w), w ∈ 𝒲}. (6)

Oracle ̂y is assumed to be efficient and scalable. Even though (5) is
stated as a linear optimization problem, ̂y can be any kind of combi-
natorial optimization oracle: linear ormixed integer linear program-
ming solvers, sorting algorithms, shortest path algorithms, etc. The
tremendous efforts spent by the mathematical programming and
combinatorial optimization communities to design efficient algo-
rithms for such problems makes such policies widely applicable.
The statistical model 𝜑w is typically a neural network.

The combinatorial optimization ̂y must treated as a layer in
the neural network hw to obtain good results. In other words, the
learning problems (3) and (4) focus on predicting the right y and not
the right direction 𝜽. These methods are called smart-predict-then-
optimize approaches by Elmachtoub and Grigas (2021), in contrast
with the traditional estimate-then-optimize approaches, which use
a “classic” learning algorithm to train 𝜑w to predict the correct 𝜽,
ignoring the fact that this prediction will be fed to ̂y to provide a
solution of (1).

Section 2 details the application settings where COAML is rele-
vant. Section 3 focuses on neural architectures. Supervised learn-
ing is detailed in Section 4, while Section 5 deals with risk minimiza-
tion and theoretical guarantees. We conclude with open problems.

2 Application settings
Learning heuristic for hard combinatorial optimization problems. In-
dustries now have access to huge amount of data. They exploit
these data to improve the performance and the resilience of their

industrial processes. When optimizing industrial processes, de-
signing algorithms that scale is the key to performance. Indeed,
the first source of profits from algorithms that optimize industrial
processes come from decreasing marginal costs. Let us illustrate
this on a routing application. Even with the best routing algorithm,
if there is only three requests to deliver, the truck will do a tour of
the city and the cost per request will be high. Having one thousand
requests gives the flexibility to serve requests in the same neigh-
borhood with the same truck, which gives low marginal cost per
request. However, the algorithm must scale on large instances if
we want to reap these benefits. This explains why the combinato-
rial optimization community has spent so much effort to design
scalable algorithms for combinatorial optimization problems, per-
haps at the cost of using simplified objectives. Problems with linear
objectives like (5) are therefore ubiquitous in combinatorial opti-
mization, and decades of research have lead to practically efficient
algorithms for many applications. However, thesemethods often do
not scale anymore when the objective function accounts for more
complex phenomena or resilience, which lead to non-linearities or
stochastic aspects. In that context, we need a scalable algorithm for
a hard to optimize problem like (1), but only have access to scalable
algorithms for a simpler problem of the form (5).

Complexity theory tells us that we cannot hope to have a pol-
icy hw of the form (6) that performs well for all instances x. How-
ever, instances encountered in practice have a specific structure,
which is encoded in the distribution ℙX. On many applications, we
can obtain excellent performance in practice, which means a low
risk (2).

Example 1. Stochastic vehicle scheduling. The vehicle schedul-
ing problem (VSP) is a classic combinatorial optimization problem
where a fleet of vehicles has to serve a set of timed requests. The
goal is to build sequences of requests for each vehicle that cover
all requests at minimum cost. A typical application is aircraft rout-
ing, where airplanes have to operate flights. When the objective
is the sum of the arc costs, the VSP can be solved efficiently as
a minimum cost flow problem on the graph where vertices are
requests and arcs a in A are pairs of requests that can be chained
in a vehicle route. Practitioners are interested in solving stochastic
versions of the VSP. For instance, in a flight is late, the airplanes
that serves it may propagate delay to the next flights is operates.
Airline are interested in aircraft routing solutions that minimize
the expected cost delay. These stochastic variants are much more
challenging computationally, and there is generally no algorithm
that scales well enough for industrial applications. Parmentier
(2021b) has proposed to use COAML to approximate the stochastic
version of VSP by a reparametrized version of the deterministic
VSP. As illustrated on Figure 1, a statistical model 𝜑w is used to
compute linear arc costs 𝜽 = (𝜃a)a that lead to good solutions of
the stochastic problem. A deterministic VSP solver then returns a
solution y. Such an approach has the industrial advantage of being
able to exploit an existing deterministic solver with all the specific
industrial constraints that have been implemented in it.

Structured learning. Combinatorial optimization layers have
emerged in the structured learning community in the early 2010s.
They were state of the art on many vision applications before the ad-
vent of deep learning (Nowozin and Lampert, 2011). In that context,

January 2025 9

�

�
	Neural Network

𝜑w

Deterministic VSP
max
y ∈𝒴

𝜽⊤y

�

�
	Loss

function
Stochastic VSP
instance x

Direction

𝜽 = (𝜃a)a
Solution

y

o

v1

v2

v3

v4

v5

v6

v7

v8

d

time

o

v1

v2

v3

v4

v5

v6

v7

v8

d

𝜃 a

𝜃a 𝜃
a

𝜃
a

𝜃 a

𝜃 a 𝜃
a

𝜃
a

𝜃a 𝜃a 𝜃a

𝜃
a

𝜃 a

𝜃 a

𝜃
a

𝜃 a

𝜃 a

time

o

v1

v2

v3

v4

v5

v6

v7

v8

d

time

Figure 1. Neural network with combinatorial optimization layer for the stochastic vehicle scheduling problem. Vertices represent requests. Dotted arrows arcs a, which
are pairs of requests that can be operated in a sequence. Colored path give vehicle routes in the solution returned. (Image adapted from Dalle et al. (2022))

x is typically an input output pair (̃x, ̄y) drawn from an unknown
distribution on (X̃, Y). Given a new ̃x, the goal is to predict the corre-
sponding output y. We are clearly in a supervised learning setting,
and the goal of the learning problem is to minimize the expectation
of a loss ℒ as in (4). Many of the modern approaches have been
pioneered in this community (Berthet et al., 2020; Blondel et al.,
2020), which is still very active today on applications such as rank-
ing problems for search engines. Blondel and Roulet (2024) give a
recent introduction to the field.

Contextual stochastic optimization. In stochastic optimization, a
decision maker has to take a decision y in 𝒴 whose cost ̃f(y, 𝝃)
depends upon the realization 𝝃 of an unobserved random noise 𝜉.
Sometimes, the decision maker has access to a context X̃ that is
correlated with 𝜉. Contextual stochastic optimization (Sadana et al.,
2024) exploits this information to improve decisions. The goal is
to train a policy ̃h ∶ ̃x ∈ 𝒳 ⟼ y ∈ 𝒴 that minimizes the expected
cost ̃f

min
̃h ∈ ℋ̃

𝔼(X̃,𝜉)[̃f(̃h(X̃), 𝜉)] . (7)

An optimal policy ̃h∗ solves the stochastic optimization problem that
results from conditioning 𝜉 on ̃X = x̃.

̃h∗(̃x) ∈ argmin
y ∈𝒴

𝔼[̃f(y, 𝜉) ∣ X̃ = ̃x]. (8)

However, the stochastic optimization (8) problem might be chal-
lenging, which prevents its application if decisions must be taken
quickly. Furthermore, the joint distribution over (X̃, 𝜉) is typically
unknown, but the decision maker has access to a training set of
instances ̃x1, 𝝃1,… , ̃xn, 𝝃n. Applying (8) would require to estimate
the conditional expectation of the cost given the context. Such an
estimate-then-optimize approach is referred to as a generative ap-
proach in machine learning. COAML is particularly well suited for
contextual stochastic optimization because it focuses on policies
as those in as in (6) that go space 𝒳 to a combinatorial space 𝒴.
We just have to define x = (̃x, 𝝃) and f 0(y, vx) = ̃f(y, 𝝃) and train a
policy hw as in (6) to minimize the empirical risk (3).

Such a smart-predict-then-optimize approach that directly pre-
dicts y is referred to as a discriminative approach in machine learn-

ing, while the estimate-then-optimize approach that calibrates
a model predicting 𝜽 is called a generative approach. On combi-
natorial 𝒴, generative approaches tend to lead to a statistically
intractable learning problem (predicting the true 𝜽) followed by a
computationally intractable optimization problem (8) (large scale
stochastic optimization is difficult). Discriminative policies avoid
these two pitfalls and tend to perform better when we take into
account the learning aspects.

Remark that nothing prevents us from defining a set of feasi-
ble solutions that depends on the context ̃x. This enables to bring
context to the hard combinatorial optimization problem approxima-
tion setting mentioned in the first paragraph. This is very relevant
in practice: industrialists often have to solve a variant of a com-
binatorial optimization problem every day that is also affected by
uncertainty, as detailed in the following example.

Example 1 (continued). If we come back to the stochastic vehi-
cle scheduling problem of Example 1, the context ̃x could be the
weather forecast, which is correlated with the delay 𝜉 of the flights.
The flights to cover, and thus the set of feasible solutions 𝒴(x)may
change from one week to another and therefore depend on x.

Two-stage stochastic optimization. In the same vein, COAML can
be used to model two-stage stochastic optimization problems

min
y ∈𝒴

̃f(y, 𝜉) where ̃f(y, 𝜉) = argmin
z ∈𝒵(x,y,𝝃)

c(y, z, 𝝃) .

Indeed, such problems can be formulated as special case of
stochastic optimization where ̃f is the value of a second stage prob-
lem. They can be made contextual. The layer (5) is then typically a
linear problem maxy ∈𝒴 𝜽⊤y on the first stage decision only (Dalle
et al., 2022), or a linear problemmax(y,z) ∈ 𝒵̃ 𝜽⊤(y⊤, z⊤)⊤ on the first
and second stage decisions if 𝒵(x, y, 𝝃) = 𝒵̃ does not depend on 𝝃
(Parmentier, 2021a).

Data driven optimization. COAML provides a natural way to model
data driven optimization problems. Indeed, the neural network 𝜑w

can be chosen to handle any kind of data as context ̃x, as highlighted
in the following example.

10 OPTIMA 107

Example 2. Paths in images. Vlastelica et al. (2020) introduce a
benchmark that has been frequently reused in the literature. It
consists in computing shortest paths on maps given as images.
The neural network 𝜑w is a convolutional neural network that pre-
dicts the arcs cost of a shortest path problem. The combinatorial
optimization oracle ŷ is Dijkstra algorithm.

Multistage stochastic optimization. Let us conclude this section by
a flagship application of COAML in operations research: multistage
stochastic optimization problems in a combinatorial setting. Con-
sider a Markov decision process. A system evolves in discrete time
steps t = 0, 1,… , T. At each time step t, the system is in a state
Xt = xt in𝒳t, and the decisionmaker has to take a decision Yt = yt in
𝒴t. The system then evolves toward a new state xt+1 according to a
possibly unknown transition probability p(Xt+1|Xt, Yt). The decision
maker incurs a cost ct(Xt, Yt) that depends upon the current state
and the decision taken. A solution is a policy h ∶ xt ∈ 𝒳t ⟼ yt ∈ 𝒴t

that minimizes the expected cost.

min
h ∈ℋ

𝔼⎡
⎣

T

∑
t= 0

ct(Xt, Yt) ∣ h⎤
⎦
. (9)

Such problems can be solved exactly by dynamic programming
when 𝒳t is sufficiently small to be enumerated and optimizing
the value function over 𝒴t is tractable. The multistage stochastic
optimization literature provides tools to handle large 𝒴 when the
dimension of𝒳 is moderate, while reinforcement learning provides
algorithms when the dimension of 𝒳 is large but 𝒴 is small. How-
ever, there is not much literature on the case where both 𝒳 and 𝒴
are combinatorial. COAML provides a natural way to encode policies
in such a setting, as illustrated by the following example.

Example 3. Dynamic vehicle routing. The 2022 EURO meets
NeurIPS vehicle routing competition (Kool et al., 2022) focused
on a dynamic vehicle routing problem. The problem considers a
rapid delivery service, which uses capacitated vehicles to serve cus-
tomers requests from a depot. Each request must be served within
a given time window. Requests arrive dynamically, and vehicles
are dispatched in wave to serve them. The state Xt of the system
at time t is the set of request that has not been served at wave
time t. The decision Yt is the subset of requests that are served by
the vehicles dispatched at time t as well as the route to serve them.
The goal is to find a policy h that minimizes the expected routing
cost.

Baty et al. (2024) remark that 𝒴t(xt) is the set of feasible so-
lutions of a prize collecting capacitated vehicle routing problem
(CVRP), a variant of the CVRP where it is not mandatory to serve
requests, but each request v served brings a prize 𝜽v. The goal is
to maximize profit, which is the sum of the prizes collected minus
the routing cost. However, if there are natural routing costs in the
dynamic VRP, there is no notion of prizes. The authors build a pol-
icy hw illustrated on Figure 2. A neural network 𝜑w predicts the
requests prizes (𝜃v)v, and the resulting prize collecting CVRP is
solved to get a solution yt. The resulting policy won the competition
with a significant margin.

3 Architectures
When applying COAML to a specific problem, the first task is to
design the architecture of the policy hw. This implies choosing the

combinatorial optimization oracle ̂y and the statistical model 𝜑w.
The choice of ̂y is applications dependent and dictated by the struc-
ture of the set of feasible solutions 𝒴(x) and the algorithms that
scale on that problem. On the contrary, the choice of 𝜑w is more
generic.

The main difficulty linked to the choice of 𝜑w is the fact that the
dimension d(x) of the instances xmay vary. That is, the dimension
of the input and the output of the neural network 𝜑w may vary. Most
contributions in the literature handle this issue with of the following
architectures.

Parallel generalized linear model. A simple but efficient strategy
consists in applying the same generalized linear model to all di-
mensions of the instance x. More precisely, we define a feature map
𝝓 ∶ (i, x) ↦ 𝝓(i, x) ∈ ℝd𝒲 that maps an instance x and dimension i
in {1,… , d(x)} to a vector 𝝓(i, x) of fixed dimension. We then define
the statistical model 𝜑w as

𝜑w(x) = (𝜃i)i ∈ {1,…,d(x)} where 𝜃i = w⊤𝝓(i, x) . (10)

Example 1 (continued). The dimensions of the flow polytope used
in the stochastic VSP corresponds to the arcs a of the digraph. We
therefore build a vector of features 𝝓(a, x) summarizing the char-
acteristics of the prospective connection a in the instance x. Arcs
cost are predicted as 𝜃a = w⊤𝝓(a, x) (Parmentier, 2021b).

Parallel neural network. The key idea in the previous technique is
to apply in parallel the same statistical model 𝝓 ↦ w⊤𝝓 to all the
dimensions of the instance x. But we can replace the generalized
linear model by a neural network 𝝍w.

𝜑w(x) = (𝜃i)i ∈ {1,…,d(x)} where 𝜃i = 𝝍w ∘ 𝝓(i, x) . (11)

Graph neural network. A limit of the two previous approaches is
that relations between the dimensions of the instance x are not
taken into account. More precisely, they can be taken into account
only through the feature map 𝝓. When the relations between these
dimensions can be encoded by a graph G whose vertices are the i
in {1,… , d(x)}, one natural way to do this is to use a graph neural
network (GNN) 𝜓w.

𝜑w(x) = 𝜓w(̃𝝓) where ̃𝝓 = (𝝓(i, x))i ∈ {1,…,d(x)}. (12)

Example 3 (continued). Baty et al. (2024) won the EURO-NeurIPS
challenge using a sparse GNN on the dynamic vehicle routing prob-
lem. Requests v are the node of the graph G and edges are pairs of
requests that are close geographically and temporally.

4 Supervised learning
We now turn to the supervised learning problem (4). We suppose
having a training set of instances x1,… , xn with target solutions
̄y1,… , ̄yn, and consider the following learning problem.

min
w

n

∑
i= 1

ℒ(̂y ∘ 𝜑w(xi), ̄yi)

Our main task is to design a loss ℒ(y, ̄y) on the solution space.
Since 𝜑w is a neural network, we want a loss that can be optimized
using stochastic gradient descent.

In this section, we fix an x and omit the dependence on x for
notational simplicity. We denote 𝒴(x) by 𝒴, and by d the dimension

January 2025 11

�

�
	Neural Network

𝜑w

Prize Collecting
CVRP oracle ŷ(𝜽)

State
xt ∈ 𝒳t

Requests prizes

𝜽 = (𝜃v)v

10

5

2

−1
50

7

Decision
yt ∈ 𝒴t(xt)

Figure 2. COAML policy for the EURO-NeurIPS dynamic vehicle routing problem. Gray nodes represent request, the blue square the depot, arrows the dispatched
routes. (Illustration is a courtesy of Léo Baty.)

of 𝜽. Let 𝒞 be the polytope conv(𝒴). Remark that since ŷ does not
depend on w, fixing 𝜽 amounts to fixing y. Most approaches there-
fore define a loss ℓ between the direction 𝜽 and the target solution
̄y, leading to the learning problem

min
w

n

∑
i= 1

ℓ(𝜑w(xi), ̄yi), (13)

where ℓ(𝜽, ̄y) = ℒ(̂y(𝜽), ̄y). The main difficulty when defining such
a loss is illustrated on Figure 3. Consider a vertex y of 𝒞. The output
of ŷ is y for any 𝜽 in the interior of the normal cone of y. As a con-
sequence, ̂y is piecewise constant on each cone of the normal fan
of 𝒞, which is the partition of ℝd into normal cones of the vertices
of 𝒞. In the structured learning literature, authors often replace
this piecewise constant loss by the structured Hinge loss (Nowozin
and Lampert, 2011, Chapter 6), a surrogate upper bound that is
convex in 𝜽. It has recently enjoyed a new popularity as the SPO+
loss (Elmachtoub and Grigas, 2021). We present here a recent al-
ternative that enjoys nice geometric properties and is convenient
on practical applications.

Regularized prediction, Fenchel Young loss, and Bregman divergence.
Since maximizing a linear objective on the vertices 𝒴 of a polytope
𝒞 = conv(𝒴) is equivalent to maximizing it on 𝒞, we can replace (5)
by

̂y(𝜽) = argmax
y ∈ 𝒞

𝜽⊤y. (14)

The non-differentiability of ŷ comes from the fact that the optimal
solution may “jump” from one vertex to another when 𝜽 crosses
the boundary between two normal cones of the normal fan. This
behavior disappears when we regularize (14) with a smooth and
strictly convex function Ω, which pushes the optimal solution to
the interior of the polytope.

argmax
y ∈ 𝒞

𝜽⊤y −Ω(y) (15)

When defining a loss ℓ between 𝜽 and ̄y, we would like ℓ(𝜽, ̄y) to be
small when ̄y is “close to” be an optimal solution of (15) for 𝜽. It is
then natural to define the Fenchel Young loss as the non-optimality
of ̄y as a solution of (15) for 𝜽.

ℓFYΩ (𝜽, ̄y) = max
y ∈ 𝒞

(𝜽⊤y −Ω(y)) − (𝜽⊤ ̄y −Ω(̄y))

= Ω∗(𝜽) +Ω(̄y) − 𝜽⊤ ̄y,
(16)

whereΩ∗(y) = maxy ∈ 𝒞 (𝜽⊤y−Ω(y)) is the Fenchel conjugate ofΩ.
Remark that the optimum in (15) is obtained in ∇Ω∗(𝜽), and that
regularizing (14) amounts to replacing ̂y by∇Ω∗. Figure 4 illustrates
the Fenchel Young loss for a simple polytope.

The loss ℓFYΩ has all the desirable properties of a loss in ML. It
is smooth, convex, and differentiable in 𝜽 with gradient.

∇𝜽ℓFYΩ (𝜽, ̄y) = ∇Ω∗(𝜽) − ̄y. (17)

y5 y6

y1

y2y3

y4 𝜃

ℱy1

ℱy2
ℱy3

ℱy4

ℱy5
ℱy6

𝜃

Normal cone to y1 Normal fan of conv(𝒴)

Figure 3. Normal cone to ̄y and normal fan of 𝒞. Oracle ŷ is piecewise constant on each cone of the normal fan.

12 OPTIMA 107

Figure 4. A polytope and the corresponding Fenchel Young loss ℓFYΩ (𝜽, ̄y) value for ̄y being the blue square vertex using a regularization by perturbationΩ.

This loss actually nicely captures the geometry induced by (15).
Given a smooth and strictly convexΩ, the Bregman divergence as-
sociated toΩ is defined as

𝒟Ω(̄y|y) = Ω(̄y) − (Ω(y) + ∇Ω(y)⊤(̄y − y)). (18)

It is the difference at ̄y between the value ofΩ and the value of the
tangent ofΩ at y, and thusmeasures the difference between ̄y and y.
It is a generalization of the squared Euclidean distance, which is
obtained whenΩ(y) = 1

2
‖y‖2. Under the additional assumption that

Ω is Legendre-type, the gradient of Ω induces a bijection from 𝒞
to ℝd, whose inverse is ∇Ω∗. If in addition 𝒞 is plain dimensional,
Blondel et al. (2020) have shown that, given y and ̄y in 𝒞, their duals
𝜽 = ∇Ω∗(y) and ̄𝜽 = ∇Ω∗(̄y), we have

ℓFYΩ (𝜽, ̄y) = 𝒟Ω(̄y ∣ y) = 𝒟Ω∗(𝜽 ∣ ̄𝜽) . (19)

In other words, the Fenchel Young loss is a primal-dual Bregman
divergence associated to the linear oracle and

ℓFYΩ (𝜑w(x), ̄y) = DΩ(

Regularized
neural network

prediction

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞∇Ω∗ ∘ 𝜑w(x)
|
| ̄y).

It remains to define regularization functions Ω that lead to good
prediction performance and tractable gradients. One natural choice
is Ω(y) = 1

2
‖y‖2. The regularized prediction (15) then amounts to

minimizing the squared Euclidean distance between the prediction
and the target solution. It is a convex quadratic optimization prob-
lem that is tractable for some polytope 𝒞. However, on some 𝒞, only
the non-regularized linear optimization oracle ̂y is available. We
now introduce anΩ that requires only calls to ̂y.

Perturbation. Let us define the perturbed linear prediction

F(𝜽) = 𝔼[argmax
y ∈ 𝒞

(𝜽 + 𝜀Z)⊤ y], (20)

where 𝜀 > 0 is and Z is a standard Gaussian vector on ℝd. Berthet
et al. (2020) suggest using the Fenchel dual of F as regularization
Ω. They show that F is smooth and strictly convex, and that Ω is
Legendre-type, hence F is its own bidual and Ω∗ = F. Danskin’s
theorem then gives

∇Ω∗(𝜽) = ∇F(𝜽) = 𝔼[argmax
y ∈𝒴

(𝜽 + Z)⊤ y].

Unbiased estimates of ∇Ω∗ and hence of ∇𝜽ℓFYΩ (𝜽, ̄y) can be ob-
tained by sampling Z and solving the resulting inner maximization
problem using ̂y. This gives a convenient way to solve the learning
problem (13) via stochastic gradient descent using only call to ̂y to
compute the stochastic gradients.

Imitation learning for multistage problem. When considering mul-
tistage stochastic optimization problems (9), supervised learning
amounts to imitation learning. The policy hw is trained to imitate
a policy h∗. On many operations research applications such as the
dynamic vehicle routing problem of Example 3, the transition prob-
ability is a deterministic function of the current state, the decision
taken, and some noise 𝜉t that is not observed at decision time but
observed after transition

Xt+1 = f(Xt, Yt, 𝜉t) . (21)

Having observed a full episode 𝝃1,… , 𝝃T, computing a posteriori the
optimal trajectory x1, y1,… , xT, yT for this episode is a deterministic
problem that can be solved when the episode is over. Let 𝛿∗ be the
corresponding policy. Such a policy is called anticipative and cannot
be applied in practice because computing the ̄yt requires to know
the future 𝝃t+1,… , 𝝃T. However, it can be recomputed a posteriori
to generate a training set x1, y1,… , xn, yn. The supervised learning
problem (13) then leads to a non-anticipative and thus applicable
policy hw that imitates h∗ (Baty et al., 2024). The approach can be
further improved using off-policy learning techniques (Greif et al.,
2024).

5 Risk minimization and generalization guarantees
Designing algorithms for the empirical risk minimization prob-
lem (3) is challenging because its objective is piecewise constant.
Using black-box global optimization solvers enabled to show that
risk minimization can lead to excellent hw (Parmentier, 2021a).
However, such solvers are not deep learning compatible and can
be applied only to generalized linear models with w of moderate
dimension. Structured Hinge losses are applicable to deep learn-
ing and have been applied in that context (Elmachtoub and Grigas,
2021). Unfortunately, they lead to tractability issues when f 0 is not
linear in y. Designing scalable and deep learning compatible risk
minimization algorithms is therefore an important open problem
for COAML.

Beyond requiring no target ̄y in the training set, one advantage
of risk minimization is that it provides guarantees on the solution
returned. Let us denote by R∗ = minh ∈ℋ ℛ(h) the risk of the best
policy whereℋ contains all possible policies (not necessarily based

January 2025 13

on COAML), and by R† = minw ℛ(hw) the risk of the best policy in
the classℋ𝒲. The gap

R∗ − R† ≥ 0

is themodel bias and can only be improved by changing the class
ℋ𝒲. Demelas et al. (2024) provide a first attempt that exploits deep
learning and Lagrangian duality to bound this model bias.

The goal of the learning algorithm is to find aw such thatℛ(hw)
is as close as possible to R†. Aubin-Frankowski et al. (2024) prove
an upper bound on the excess riskℛ(ŵn) − R† of the ̂wn returned
by their learning algorithm that stands with high probability on the
drawing of the training set x1,… , xn. They also show thatℛ(ŵn)−R†

converges to 0 with the size of the training set. Parmentier (2021a)
shows that on some problem, the model bias can be bounded, and
thus h ̂wn

is an approximation algorithm where the approximation
ratio is controlled in expectation over ℙX.

6 Open problems
COAML is a young field that has already shown its potential on a
wide range of applications. However, many open problems remain.
On the architecture side, we focused on learning the objective direc-
tion 𝜽. Learning constraints seems relevant for many applications,
and not much has been done on this matter. On the learning side,
designing scalable and deep learning compatible risk minimization
algorithms is a key challenge. One challenge that is both theoret-
ical and practical is the design of learning algorithms with good
generalization guarantees and that bound the model bias and the
excess risk.

Axel Parmentier, CERMICS, ENPC
Institut Polytechnique de Paris, 6 et 8 av Blaise Pascal, Cité Descartes,
Champs sur Marne, 77455 Marne-la-Vallée, France
axel.parmentier@enpc.fr

References
Aubin-Frankowski, P.-C., De Castro, Y., Parmentier, A., and Rudi, A. (2024).

Generalization bounds of surrogate policies for combinatorial optimiza-
tion problems. arXiv:2407.17200.

Baty, L., Jungel, K., Klein, P. S., Parmentier, A., and Schiffer, M. (2024). Com-
binatorial Optimization-Enriched Machine Learning to Solve the Dynamic
Vehicle Routing Problem with Time Windows. Transportation Science.

Bengio, Y., Lodi, A., and Prouvost, A. (2021). Machine learning for combina-
torial optimization: A methodological tour d’horizon. European Journal of
Operational Research, 290(2):405–421.

Berthet, Q., Blondel, M., Teboul, O., Cuturi, M., Vert, J.-P., and Bach, F. (2020).
Learning with differentiable perturbed optimizers. In Advances in Neural
Information Processing Systems 33 (NeurIPS), pages 9508–9519.

Blondel, M., Martins, A. F. T., and Niculae, V. (2020). Learning with fenchel-
young losses. J. Mach. Learn. Res., 21:35:1–35:69.

Blondel, M. and Roulet, V. (2024). The Elements of Differentiable Program-
ming. arXiv:2403.14606.

Dalle, G., Baty, L., Bouvier, L., and Parmentier, A. (2022). Learning with com-
binatorial optimization layers: a probabilistic approach. arXiv2207.13513.

Demelas, F., Roux, J. L., Lacroix, M., and Parmentier, A. (2024). Predicting
lagrangian multipliers for mixed integer linear programs. In Forty-first
International Conference on Machine Learning.

Elmachtoub, A. N. and Grigas, P. (2021). Smart “Predict, then Optimize”.
Management Science.

Greif, T., Bouvier, L., Flath, C. M., Parmentier, A., Rohmer, S. U., and Vidal, T.
(2024). Combinatorial optimization and machine learning for dynamic
inventory routing. arXiv:2402.04463.

Kool, W., Bliek, L., Numeroso, D., Reijnen, R., Afshar, R. R., Zhang, Y., Cat-
shoek, T., Tierney, K., Uchoa, E., Vidal, T., and Gromicho, J. (2022). The
EURO meets NeurIPS 2022 vehicle routing competition.

Nowozin, S. and Lampert, C. H. (2011). Structured Learning and Prediction
in Computer Vision. Foundations and Trends® in Computer Graphics and
Vision, 6(3–4):185–365.

Parmentier, A. (2021a). Learning structured approximations of operations
research problems. arXiv:2107.04323.

Parmentier, A. (2021b). Learning to Approximate Industrial Problems by
Operations Research Classic Problems. Operations Research.

Sadana, U., Chenreddy, A., Delage, E., Forel, A., Frejinger, E., and Vidal, T.
(2024). A survey of contextual optimization methods for decision-making
under uncertainty. European Journal of Operational Research.

Vlastelica, M., Paulus, A., Musil, V., Martius, G., and Rolinek, M. (2020).
Differentiation of Blackbox Combinatorial Solvers.

mailto:axel.parmentier@enpc.fr
http://arxiv.org/abs/2407.17200
http://arxiv.org/abs/2403.14606
http://arxiv.org/abs/2402.04463
http://arxiv.org/abs/2107.04323

14 OPTIMA 107

MOS Awards 2024
Miguel Anjos

Thank you to all who attended the ISMP Opening Ceremony and
Awards Ceremony. For those who missed it, here is the list of
awardees.

Mathematical Programming Computation Outstanding Paper
of the Year 2022
Jordan Jalving, Sungho Shin, and Victor M. Zavala, “A graph-based
modeling abstraction for optimization: Concepts and implementa-
tion in Plasmo.jl.”

Mathematical Programming Computation Outstanding Paper
of the Year 2023
Daniel Rehfeldt, Thorsten Koch, and Yuji Shinano, “Faster exact
solution of sparse MaxCut and QUBO problems.”

Paul Y. Tseng Memorial Lectureship in
Continuous Optimization 2024
Awarded to Kim-Chuan Toh:

Kim-Chuan Toh has made many outstanding contributions in the
area of continuous optimization including development of very
successful software, original contributions to design and imple-
mentation of algorithms as well as original contributions to theory.
In particular, Kim-Chuan has made indispensable contributions to
solution methods for semidefinite programming and by extension
to solving convex optimization problems more broadly.
In addition to his high-quality and high-impact contributions in
continuous optimization, Kim-Chuan has made exemplary contri-
butions in leadership and in service to the optimization community
and to promotion of research and applications of continuous opti-
mization in the Asia-Pacific region.

A.W. Tucker Prize 2024
Awarded to Yang Liu for the Thesis Sparsification, Online
Optimization, and an Almost-Linear Time Algorithm for Maximum
Flow:

This thesis is a tour de force that tackles multiple fundamental opti-
mization questions from unique andmodern angles. First, Liu gives
an almost-linear-time algorithm that computes exact maximum-
and minimum-cost flows in directed graphs. Second, he offers
methods with nearly optimal complexity properties for solving lp-
norm regression problems, leveraging new sparsification tech-
niques. Finally, Liu considers online discrepancy minimization:

given a sequence of T n-dimensional vectors with norm ≤ 1, the
linear-time algorithm succeeds with high probability to choose
signs such that the signed sum of vectors is below O(log nT).

A.W. Tucker Prize 2024 Finalists
Jason Altschuler is a finalist for The A. W. Tucker Prize 2024 for the
Thesis Transport and Beyond: Efficient Optimization Over Probability
Distributions:

This thesis studies two optimization problems for which the de-
cision variables are probability distributions. Both parts relate to
optimal transport, a geometrically meaningful measure of distance
between any pair of probability distributions that has received sub-
stantial attention in areas such as machine learning. The first part
focuses on optimal transport with so-called entropic regularization.
Altschuler’s thesis shows that the seemingly distinct problems of
optimal transport, min-mean-cycle, matrix balancing, and matrix
scaling can all be viewed under the same lens as optimization over
a joint probability distribution with similarly constrained marginals.
Using this lens, the thesis provides approximation algorithms for all
four problems that have nearly optimal run times, namely, close to
the n2 run time requiredmerely to read an n-by-nmatrix input. The
second part of the thesis goes beyond the setting of optimization
over joint probability distributions with two marginals to multi-
marginal optimal transport (MOT) problems with k ≥ 2marginals.
Such problems, which arise in data science, PDE simulation, and
quantum chemistry, are difficult in fundamental ways. The thesis
addresses multiple questions about the potential polynomial-time
solvability of MOT problems. It shows that certain MOT problems
are indeed intractable, while also offering a unified algorithmic
framework – built upon classical ideas from oracle-based optimiza-
tion algorithms – for solving certain structured MOT problems.

Nathan Klein is a finalist for The A.W. Tucker Prize 2024 for the The-
sis Finding Structure in Entropy: Improved Approximation Algorithms
for TSP and other Graph Problems:

This thesis revisits a fundamental question in the design of ap-
proximation algorithms for solving the traveling salesman prob-
lem (TSP). In particular, it revisits the decades-old question of
whether it is possible to improve upon the (3/2)-approximation
algorithm of Christofides & Serdyukov for metric TSP. Incredibly,
after considerable effort by many to answer this question, this

January 2025 15

thesis proves that for at least some small epsilon there exists a
deterministic ((3/2)-epsilon)-approximation algorithm for met-
ric TSP, and that the integrality gap of the natural LP relaxation
for TSP is at most (3/2)-epsilon. The Christofides & Serdyukov
algorithm yields no better than a (3/2)-approximation because it
can be saddled with a spanning tree (for initialization) with poor
properties. Klein’s thesis (1) leverages a “max entropy” approach
for choosing a random initial spanning tree based on a carefully
chosen distribution and proves that this yields undesirable proper-
ties with low probability; and (2) proves new properties about the
structure of near-minimum cuts of graphs, which in turn gives a
setting in which the prior probabilistic tools can be applied.

Lagrange Prize in Continuous Optimization 2024
Awarded to Jérôme Bolte and Edouard Pauwels for “Conservative
set valued fields, automatic differentiation, stochastic gradient
methods and deep learning”, Mathematical Programming 188
(2021):

Bolte and Pauwels model the algorithmic differentiation operation
via new variational objects called conservative set valued fields.
They also conduct the convergence analysis to critical points for
non-smooth stochastic first-order methods. Their paper combines
techniques from several fields including non-smooth analysis, first-
order stochastic approximation, machine learning, and algorithmic
differentiation, with a central role played by o-minimal geome-
try. Bolte and Pauwels thus provide a remarkable theoretical and
algorithmic contribution to the field of continuous optimization.

Beale-Orchard-Hays Prize for Excellence in Computational
Mathematical Programming 2024
Awarded to Bartolomeo Stellato, Goran Banjac, Paul Goulart,
Alberto Bemporad, and Stephen Boyd for “OSQP: An operator
splitting solver for quadratic programs”, Mathematical
Programming Computation 12 (2020):

The committee commends the following aspects of this work: the
robust implementation of the software, with attention to issues
such as preprocessing problem instance and detecting infeasi-
bility; the long list of users and successful practical applications
of the software; the impact the paper has already made on the
field, as evidenced by its large number of citations; the careful and
extensive numerical testing in the paper.

and to David Applegate, Mateo Díaz, Oliver Hinder, Haihao Lu,
Miles Lubin, Brendan O’Donoghue, and Warren Schudy for “Prac-
tical large-scale linear programming using primal-dual hybrid
gradient”, Advances in Neural Information Processing Systems 34
(2021), and “Faster first-order primal-dual methods for linear pro-
gramming using restarts and sharpness”, Mathematical Program-
ming 201 (2023):

The committee commends the following aspects of this work: its
long-term potential to make first-order methods a practical option
to solve large-scale linear programming problems; its adaptability
to GPUs and other parallel computing architectures; the careful
algorithmic engineering work to make the methods practical; and
the sophisticated and innovative analysis used to justify and de-
scribe the performance of the algorithms.

Delbert Ray Fulkerson Prize 2024
Awarded to Ben Cousins and Santosh Vempala for “Gaussian
cooling and O ∗ (n3) algorithms for volume and Gaussian volume”,
SIAM Journal on Computing 47 (2018):

Computing the volume of a convex body is an ancient challenge.
Cousins & Vempala develop a fast algorithm that approximates the
volume of a well-rounded convex body while querying membership
of a cubic number of points, and also present the fastest algorithms
for integrating and sampling from a Gaussian measure restricted
to a convex body. The impact of the ideas goes far beyond the two
core problems addressed.

and to Nathan Keller and Noam Lifshitz for “The junta method for
hypergraphs and the Erdős–Chvátal Simplex conjecture”, Advances
in Mathematics 392 (2021):

The authors give a new approach for solving Turán-type problems,
which concern the maximum number of edges a hypergraph can
have without containing certain expansions of a given forbidden
substructure. The junta method approximates these hypergraphs
by juntas, and the authors successfully apply it to the Erdős–Chvá-
tal simplex conjecture, the Erdős–Sós forbidding one intersection
problem, and the Frankl–Füredi special simplex problem.

and to Zilin Jiang, Jonathan Tidor, Yuan Yao, Shengtong Zhang,
and Yufei Zhao for “Equiangular lines with a fixed angle”, Annals of
Mathematics 194 (2021):

The authors solve a combinatorial geometry problem that has
received considerable attention since the 1960s: determine the
maximum number of lines in d-dimensional space such that the
angle between every pair is exactly 𝜃. For fixed 𝜃 and large d, the
authors provide a sharp bound. The proofs combine combinatorial
ideas with tools from spectral graph theory in a clever, original
and elegant way.

George B. Dantzig Prize 2024
Awarded to Stephen J. Wright

The George B. Dantzig Prize is awarded to Stephen J. Wright for
his fundamental contributions to nonlinear optimization. He pio-
neered infeasible interior point methods which culminated in his
1997 SIAM monograph on the subject. Moreover, Stephen Wright
contributed highly cited, outstanding, and very influential work in
a broad range of fields in mathematical optimization, including
algorithms for control, nonsmooth optimization with applications
to compressed sensing, machine learning, and data science. His
comprehensive contributions range from theory, algorithm design
and analysis to applications and the development of high-impact
software.

Congratulations!

Miguel Anjos, University of Edinburgh
Chair, Mathematical Optimization Society
miguel.f.anjos@ed.ac.uk

mailto:miguel.f.anjos@ed.ac.uk

16 OPTIMA 107

ICCOPT 2025: 8th International Conference on Continuous Optimization

ICCOPT 2025 will be held on the campus of the University of South-
ern California in Los Angeles, July 21–24, 2025, to be preceded by
a 2-day summer school.

Some preliminary details can be found on the website
sites.google.com/view/iccopt2025/home. We will continue to up-
load information of the conference on the site. For now, please note
that the conference registration has opened on November 1, 2024.

We look forward to welcoming you to this exciting conference
of our field.

Plenary Speakers
• Alexandre d’Aspremont, CNRS and
Ecole Normale Supérieure Paris

• Claudia Sagastizábal, IMECC Unicamp Brazil
• Kim-Chuan Toh, National University of Singapore
• Stephen J. Wright, University of Wisconsin

Semi-Plenary Speakers
• Jérôme Bolte, Université Toulouse 1 Capitole
• John C. Duchi, Stanford University
• Maryam Fazel, University of Washington
• Tim Hoheisel, McGill University
• Mingyi Hong, University of Minnesota
• Ruth Misener, Imperial College London
• Anthony Man-Cho So, Chinese University of Hong Kong
• Angelika Wiegele, Alpen-Adria-Universität Klagenfurt

Clusters/Chairs
1. Nonlinear optimization

Liaison: Serge Gratton
Cluster Chairs: Frank E. Curtis, Oliver Hinder, Stefan Ulbrich

2. Nonsmooth optimization
Liaison: Shimrit Shtern
Cluster Chairs: Tim Hoheisel, Radu loan Bot, Pedro Perez-Aros

3. Conic and semi-definite optimization
Liaison: Ying Cui
Cluster Chairs: Kim-Chuan Toh, Angelika Wiegele

4. Optimization under uncertainty, data driven optimization
Liaison: Johannes Royset
Cluster Chairs: Johannes Royset, Tito Homem-de-Mello,
Daniel Kuhn, Junyi Liu

5. Optimization for data science
Liaison: Akiko Takeda
Cluster Chairs: Akiko Takeda, Alura Palagi, Yuxin Chen

6. Fixed points and variational inequalities
Liaison: Xiaojun Chen
Cluster Chairs: Xiaojun Chen, Jelena Diakonikolas, Jinlai Shen

7. Interplay between continous and discrete optimization
Liaison: Roberto Cominetti
Cluster Chairs: Alper Atamturk, Ruth Misener, Daniel Bienstock

8. Computational software
Liaison: Etienne de Klerk
Cluster Chairs: Cosmin Gheorghita Petra, Defeng Sun

9. Derivative free optimization
Liaison: Veronica Piccialli
Cluster Chairs: Giampaolo Liuzzi, Ana Luisa Custodio

10. Global optimization
Liaison: Veronica Piccialli
Cluster Chairs: Marco Locatelli, Sonia Cafieri

11. Multi-agent optimization and games
Liaison: Roberto Cominetti
Cluster Chairs: Julio Deride, Mingyi Hong, Uday V. Shanbhag

12. Optimization on manifolds
Liaison: Niao He
Cluster Chairs: Nicolas Boumal, Pierre-Antoine Absil,
Shigian Ma

13. Optimization for emerging technologies (LLM quantum computing)
Liaison: Martin Jaggi
Cluster Chairs: Martin Jaggi, Tamás Terlaky, Ruoyu Sun

14. PDE-constrained optimization
Liaison: Michael Hintermüller
Cluster Chairs: Michael Hintermüller, Drew Kouri

15. Optimization applications (communication, energy, health, ML, …)
Liaison: Martin Jaggi
Cluster Chairs: Lin Xiao, Claudia Sagastizábal

Summer School
We are particularly interested in encouraging talented students
and postdoctoral fellows to attend the summer school. Since we
have capped the capacity of the school at one hundred count, the
earlier we receive your show of interest, the higher the chance we
can accept your application to the school.

Lecturers
• Ying Cui, University of California, Berkeley
• Jon Lee, University of Michigan
• Meisam Razaviyayn, University of Southern California
• Johannes O. Royset, University of Southern California

Further information: sites.google.com/view/iccopt2025/home

Jong-Shi Pang and Meisam Razaviyayn
Co-Chairs, ICCOPT 2025

IMPRINT Editor: Sebastian Pokutta, Zuse Institute Berlin (ZIB), Takustraße 7, 14195 Berlin, Germany. pokutta@zib.de Co-Editors: Swati Gupta, Massachusetts Institute of
Technology, Sloan School of Management, 100Main Street Cambridge, MA 02142, USA, swatig@mit.edu Omid Nohadani, Artificial Intelligence and Data Science, Benefits Science
Technologies, Boston, MA 02110, USA, onohadani@gmail.com Founding Editor: Donald W. Hearn Published by the Mathematical Optimization Society, www.mathopt.org

Design and typesetting by Christoph Eyrich, Berlin, Germany Printed by Oktoberdruck GmbH, Berlin, Germany

https://sites.google.com/view/iccopt2025/home
https://sites.google.com/view/iccopt2025/home
mailto:pokutta@zib.de
pokutta@zib.de
mailto:swatig@mit.edu
mailto:onohadani@gmail.com
onohadani@gmail.com
http://www.mathopt.org

